NF-kappaB/Rel factors control programmed cell death (PCD), and this control is crucial to oncogenesis, cancer chemoresistance, and antagonism of tumor necrosis factor (TNF) alpha-induced killing. With TNFalpha, NF-kappaB-mediated protection involves suppression of the c-Jun-N-terminal kinase (JNK) cascade, and we have identified Gadd45beta, a member of the Gadd45 family, as a pivotal effector of this activity of NF-kappaB. Inhibition of TNFalpha-induced JNK signaling by Gadd45beta depends on direct targeting of the JNK kinase, MKK7/JNKK2. The mechanism by which Gadd45beta blunts MKK7, however, is unknown. Here we show that Gadd45beta is a structured protein with a predicted four-stranded beta-sheet core, five alpha-helices, and two acidic loops. Association of Gadd45beta with MKK7 involves a network of interactions mediated by its putative helices alpha3 and alpha4 and loops 1 and 2. Whereas alpha3 appears to primarily mediate docking to MKK7, loop 1 and alpha4-loop 2 seemingly afford kinase inactivation by engaging the ATP-binding site and causing conformational changes that impede catalytic function. These data provide a basis for Gadd45beta-mediated blockade of MKK7, and ultimately, TNFalpha-induced PCD. They also have important implications for treatment of widespread diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M703112200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!