p53 is the primary arbiter of the mammalian cell's response to stress, the governor of life and death. It is the nexus upon which signals converge from an array of sensors that detect damage to DNA or to the mitotic spindle or the cytoskeleton, hypoxia, cell detachment, growth factor deprivation, oncogene expression and other forms of stress. Depending on the type, intensity and duration of the signals, p53 in turn transactivates batteries of genes specifying cell cycle arrest, DNA repair, apoptosis, or other anti-neoplastic functions. At the same time, p53 represses anti-apoptotic and survival functions. The type, intensity and duration of signaling dictate the sequellae. While this response is combinatorial, the frequent perturbation of p53 function in a wide spectrum of cancers attests to its central role in the suppression of neoplasia. As our understanding of regulation by and of p53 has deepened, many possibilities have been suggested for re-establishing p53 or its effectors in tumor cells. This review will briefly summarize the role of p53 mutations in the etiology and treatment of breast cancer and then consider the wide array of strategies being developed to re-establish p53 function in tumor cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2741/2378 | DOI Listing |
BMC Complement Med Ther
January 2025
College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, 116600, People's Republic of China.
BMC Complement Med Ther
January 2025
Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
Background: Oral squamous cell carcinoma (OSCC) ranks as the sixth most common malignancy globally. Cisplatin is the standard chemotherapy for OSCC, but resistance often reduces its efficacy, necessitating new treatments with fewer side effects. Rumex dentatus L.
View Article and Find Full Text PDFSci Rep
January 2025
Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Bangkok, Thailand.
An ideal chemotherapeutic agent damages DNA, specifically in cancer cells, without harming normal cells. Recently, we used Box A of HMGB1 plasmid as molecular scissors to produce DNA gaps in normal cells. The DNA gap relieves DNA tension and increases DNA strength, preventing DNA double-strand breaks (DSBs).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Clinical Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
This study is designed to assess the effect of root extract of P. ginseng on kidney tissue injury attributed to cisplatin and its molecular mechanism involved in this process in the AKI rat model. Twenty-four male Wistar rats were randomly allocated into 4 experimental groups including: the control group, the cisplatin group, the extract 100 mg/kg group, and the extract 200 mg/kg group.
View Article and Find Full Text PDFZhonghua Bing Li Xue Za Zhi
February 2025
Department of Pathology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China.
To investigate the clinicopathological characteristics of solid, endometrial-like and transitional (SET) cell growth subtype in high-grade serous ovarian carcinoma (HGSC). Clinical data of 25 cases of HGSC-SET were collected from January 2020 to March 2024 at the Affiliated Suzhou Hospital of Nanjing Medical University, and their histological features were analyzed. Immunohistochemical stains were used to analyze the expression of ER, PR, PAX8, WT-1, p16, p53 and Ki-67.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!