The membrane leakage caused by the cell penetrating peptide Tp10, a variant of transportan, was studied in large unilamellar vesicles with the entrapped fluorophore calcein. The vesicles were composed of zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine. A significant decrease in membrane leakage was found when the 55kDa streptavidin protein was attached to Tp10. When a 5.4kDa peptide nucleic acid molecule was attached, the membrane leakage was comparable to that caused by Tp10 alone. The results suggest that direct membrane effects may cause membrane translocation of Tp10 alone and of smaller complexes, whereas these effects do not contribute for larger cargoes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.febslet.2007.04.046 | DOI Listing |
Phytopathology
January 2025
Guizhou University, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Huaxi District, Guiyang, Guizhou Province of China, Guiyang, China, 550025;
Gray mold is an important disease of crops and is widespread, harmful, difficult to control, and prone to developing fungicide resistance. Screening new fungicides is an important step in controlling this disease. Hydroxychloroquine is an anti-inflammatory and anti-malarial agent, which has shown marked inhibitory activity against many fungi in medicine.
View Article and Find Full Text PDFPhysiol Plant
January 2025
College of Enology and Horticulture, Ningxia University/College of Modern Grape and Wine Industry/Ningxia Grape and Wine Research Institute/Engineering Research Center of Grape and Wine, Ministry of Education, Yinchuan, P.R. China.
Calcium ions (Ca) are important second messengers and are known to participate in cold signal transduction. In the current study, we characterized a Ca-binding protein gene, VamCP1, from the extremely cold-tolerant grape species Vitis amurensis. VamCP1 expression varied among organs but was highest in leaves following cold treatment, peaking 24 h after treatment onset.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Internal Medicine, School of Medicine, Hazrat-e Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran.
Dengue virus (DENV) poses a considerable threat to public health on a global scale, since about two-thirds of the world's population is currently at risk of contracting this arbovirus. Being transmitted by mosquitoes, this virus is associated with a range of illnesses and a small percentage of infected individuals might suffer from severe vascular leakage. This leakage leads to hypovolemic shock syndrome, generally known as dengue shock syndrome, organ failure, and bleeding complications.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
State Key Laboratory of Pathogenesis Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology Xinjiang Medical University, Urumqi, 830011, People's Republic of China.
Purpose: A synergistic treatment strategy of phototherapy and chemotherapy has been shown to improve efficacy and offer unique advantages over monotherapy. The purpose of this study is to explore a new nanocarrier system with liposome as the inner membrane and erythrocyte membrane as the outer membrane, which aims to realize the leak-free load of phototherapy drug indocyanine green (ICG) and chemotherapy drug doxorubicin (DOX), prolong the circulation time in vivo and improve the therapeutic effect.
Patients And Methods: In this study, bilayer membrane-loaded ICG and DOX nanoparticles (RBC@ICG-DOX NPs) were prepared and characterized.
Biomater Adv
January 2025
NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, Poznan 61-614, Poland. Electronic address:
The effectiveness and safety of hemodialysis can be hindered by protein accumulation, mechanical instability of membranes and bacterial infection during the dialytic therapy. Herein, we show that cellulose acetate membranes modified with the low-fouling polymers (namely polyvinylpyrrolidone and polyethylene glycol), followed by the in situ reduction of different densities of silver oxide(I) nanoparticles, can effectively address these limitations. These improvements comprise the enhanced resistance to the protein fouling, improved antimicrobial capabilities against S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!