A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Application of artificial neural network for classification of thyroid follicular tumors. | LitMetric

Objective: To analyze smears of 197 thyroid follicular tumors (adenoma and carcinoma).

Study Design: Several types of artificial neural networks (ANN) of various designs were used for diagnosis of thyroid follicular tumors. The typical complex of cytologic features, some nuclear morphometric parameters (area, perimeter, shape factor) and density features of chromatin texture (mean value and SD of gray levels) were defined for each tumor.

Results: The ANN was trained by means of cytologic features characteristic for a thyroid follicular adenoma and a follicular carcinoma. At subsequent testing, the correct cytologic diagnosis was established in 93% (25 of 27) of cases. The morphometry increased the accuracy of diagnosis for follicular tumors in up to 97% (75 of 78) of cases. ANN correctly distinguished an adenoma or a carcinoma in 87% (73 of 84) of cases when using color microscopic images of tumors.

Conclusion: The usage of ANN has raised sensitivity of cytologic diagnosis of follicular tumors to 90%, compared with a usual cytologic method (sensitivity of 56%). The automatic classification of thyroid follicular tumors by means of ANN is prospective.

Download full-text PDF

Source

Publication Analysis

Top Keywords

follicular tumors
24
thyroid follicular
20
artificial neural
8
classification thyroid
8
follicular
8
cytologic features
8
cytologic diagnosis
8
diagnosis follicular
8
tumors
6
thyroid
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!