Single bacterial spores were analyzed by using nonlinear Raman microspectroscopy based on coherent anti-Stokes Raman scattering (CARS). The Raman spectra were retrieved from CARS spectra and found to be in excellent agreement with conventionally collected Raman spectra. The phase retrieval method based on maximum entropy model revealed significant robustness to external noise. The direct comparison of signal amplitudes exhibited a factor of 100 stronger CARS signal, as compared with the Raman signal.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1876523PMC
http://dx.doi.org/10.1073/pnas.0702107104DOI Listing

Publication Analysis

Top Keywords

single bacterial
8
raman spectra
8
raman
6
comparison coherent
4
coherent spontaneous
4
spontaneous raman
4
raman microspectroscopies
4
microspectroscopies noninvasive
4
noninvasive detection
4
detection single
4

Similar Publications

Introduction: Patients with suspected bacterial infection frequently receive empiric, broad-spectrum antibiotics prior to pathogen identification due to the time required for bacteria to grow in culture. Direct-from-blood diagnostics identifying the presence or absence of bacteria and/or resistance genes from whole blood samples within hours of collection could enable earlier antibiotic optimisation for patients suspected to have bacterial infections. However, few randomised trials have evaluated the effect of using direct-from-blood bacterial testing on antibiotic administration and clinical outcomes.

View Article and Find Full Text PDF

Although single bacteria have been applied to the Polycyclic Aromatic Hydrocarbons (PAHs) remediation, its efficacy is severely restricted by long degradation periods and low efficacy. A microbial symbiotic system founded by two or more bacterial strains may be an alternative to traditional remediation approaches. Its construction is, however, hampered by antagonistic interactions and remains challenging.

View Article and Find Full Text PDF

The combination of polystyrene microplastics and di (2-ethylhexyl) phthalate promotes the conjugative transfer of antibiotic resistance genes between bacteria.

Ecotoxicol Environ Saf

January 2025

MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China. Electronic address:

Plastic pollution has become a common phenomenon. The process of plastic degradation is accompanied by the release of microplastics and plasticizers. However, the coexistence of microplastics and plasticizers on the transfer of antibiotic resistance genes (ARGs) has not been reported until now.

View Article and Find Full Text PDF

This study aimed to investigate the pharmacokinetics of difloxacin in pigeons following oral (PO), intramuscular (IM), and intravenous (IV) administration. Thirty pigeons were randomly divided into three groups (IM, IV, and PO; n = 10 per group). Difloxacin was administered at 10 mg/kg body weight (BW) via each route.

View Article and Find Full Text PDF

Synergistic effect of proanthocyanidins and cefquinoxime sulfate on methicillin-resistant Staphylococcus aureus.

Pak J Pharm Sci

January 2025

Innovation Center Laboratory for Traditional Chinese Veterinary Medicine (TCVM), College of Veterinary Medicine, China Agricultural University, Beijing, China.

To address the severe problem of methicillin-resistant Staphylococcus aureus (MRSA) resistance, this study identified a single component from traditional Chinese medicine that, when used in combination with existing antibiotics, enhances the therapeutic efficacy of the antimicrobial drugs. Using the micro broth dilution method and the checkerboard dilution method, susceptibility tests were conducted on ten commonly used β-lactam antibiotics against eleven strains of MRSA. It was found that cefquinome sulfate exhibits synergistic activity with PROs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!