Levels of vascular endothelial growth factor (VEGF) are regulated, in part, through activation of the phosphatidylinositol 3'-kinase/Akt pathway. Using pharmacologic inhibitors, we have examined the relative contributions of Akt and mammalian target of rapamycin (mTOR) signaling to VEGF production in neuroblastoma and rhabdomyosarcoma cells growing under normoxic (21% O(2)) or hypoxic (1% O(2)) conditions. Exogenous VEGF stimulated both Akt and extracellular signal-regulated kinase 1/2 phosphorylation in six of seven rhabdomyosarcoma cell lines but in only one of seven neuroblastoma cells, suggesting autocrine stimulation predominantly in rhabdomyosarcoma cell lines. In general, under normoxic conditions, neuroblastoma cells produced more VEGF (120-1,180 pg/10(6) cells/24 h) compared with rhabdomyosarcoma lines (0-200 pg/10(6) cells/24 h). Rapamycin, a selective inhibitor of mTOR, reduced VEGF production in rhabdomyosarcoma cells under normoxic conditions and partially suppressed hypoxia-driven increases in VEGF. However, it poorly inhibited VEGF production under either condition in the majority of neuroblastoma cell lines despite inhibition of mTOR signaling. Rapamycin failed to modulate levels of hypoxia-inducible factor 1alpha (HIF-1alpha) under normoxic conditions and modestly reduced hypoxia-driven increases in HIF-1alpha only in rhabdomyosarcoma cells. In contrast to rapamycin, inhibition of Akt by A-443654 completely blocked signaling to glycogen synthase kinase 3beta and had more dramatic effects on VEGF production. Notably, A-443654 significantly inhibited VEGF production in rapamycin-refractory neuroblastoma cell lines. Importantly, whereas combining A-443654 with rapamycin had variable effect on cell proliferation, the combination essentially blocked hypoxia-driven increases in VEGF in all cell lines examined, suggesting that dual blockade at different levels in the phosphatidylinositol 3'-kinase-initiated signaling pathway may be a reasonable strategy for preventing VEGF production in cancer cells derived from pediatric solid tumors. However, this will require formal testing in vivo using animal models of childhood cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1535-7163.MCT-06-0646 | DOI Listing |
Transl Oncol
January 2025
Johns Hopkins Greenberg Bladder Cancer Institute, Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA. Electronic address:
Bladder cancer (BLCA) genomic profiling has identified molecular subtypes with distinct clinical characteristics and variable sensitivities to frontline therapy. BLCAs can be categorized into luminal or basal subtypes based on their gene expression. We comprehensively characterized nine human BLCA cell lines (UC3, UC6, UC9, UC13, UC14, T24, SCaBER, RT4V6 and RT112) into molecular subtypes using orthotopic xenograft models.
View Article and Find Full Text PDFSci Signal
January 2025
Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA.
Bruton's tyrosine kinase (BTK) is a major drug target in immune cells. The membrane-binding pleckstrin homology and tec homology (PH-TH) domains of BTK are required for signaling. Dimerization of the PH-TH module strongly stimulates the kinase activity of BTK in vitro.
View Article and Find Full Text PDFObjective: Our study aimed to investigate the therapeutic effects of the Kuntai capsule in improving ovarian function in rats with transplantation of cryopreserved ovary.
Methods: Two mice ovary cell lines were cultured with Kuntai capsule decoction, and cell apoptosis was detected by MTT assay. A total of 90 SPF Sprague Dawley rats were included in this study.
Proc Natl Acad Sci U S A
January 2025
Shenzhen Hospital, Southern Medical University, Shenzhen 518000, China.
ADAR is highly expressed and correlated with poor prognosis in hepatocellular carcinoma (HCC), yet the role of its constitutive isoform ADARp110 in tumorigenesis remains elusive. We investigated the role of ADARp110 in HCC and underlying mechanisms using clinical samples, a hepatocyte-specific knock-in mouse model, and engineered cell lines. ADARp110 is overexpressed and associated with poor survival in both human and mouse HCC.
View Article and Find Full Text PDFPLoS Pathog
January 2025
LPHI, UMR 5294 CNRS/UM-UA15 Inserm, Université de Montpellier, Montpellier, France.
A sustained blood-stage infection of the human malaria parasite P. falciparum relies on the active exit of merozoites from their host erythrocytes. During this process, named egress, the infected red blood cell undergoes sequential morphological events: the rounding-up of the surrounding parasitophorous vacuole, the disruption of the vacuole membrane and finally the rupture of the red blood cell membrane.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!