Frequency-dependent selection and the maintenance of genetic variation: exploring the parameter space of the multiallelic pairwise interaction model.

Genetics

Department of Zoology, Allan Wilson Centre for Molecular Ecology and Evolution, University of Otago, Dunedin 9054, New Zealand.

Published: July 2007

When individuals' fitnesses depend on the genetic composition of the population in which they are found, selection is then frequency dependent. Frequency-dependent selection (FDS) is often invoked as a heuristic explanation for the maintenance of large numbers of alleles at a locus. The pairwise interaction model is a general model of FDS via intraspecific competition at the genotypic level. Here we use a parameter-space approach to investigate the full potential for the maintenance of multiallelic equilibria under the pairwise interaction model. We find that FDS maintains full polymorphism more often than classic constant-selection models and produces more skewed equilibrium allele frequencies. Fitness sets with some degree of rare advantage maintained full polymorphism most often, but a wide variety of nonobvious fitness patterns were also found to have positive potential for polymorphism. An example is put forth suggesting possible explanations for multiallelic polymorphisms maintained despite positive FDS on individual alleles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1931533PMC
http://dx.doi.org/10.1534/genetics.107.073072DOI Listing

Publication Analysis

Top Keywords

pairwise interaction
12
interaction model
12
frequency-dependent selection
8
full polymorphism
8
selection maintenance
4
maintenance genetic
4
genetic variation
4
variation exploring
4
exploring parameter
4
parameter space
4

Similar Publications

The Effective Fragment Potential (EFP) method, a polarizable quantum mechanics-based force field for describing non-covalent interactions, is utilized to calculate protein-ligand interactions in seven inactive cyclin-dependent kinase 2-ligand complexes, employing structural data from molecular dynamics simulations to assess dynamic and solvent effects. Our results reveal high correlations between experimental binding affinities and EFP interaction energies across all the structural data considered. Using representative structures found by clustering analysis and excluding water molecules yields the highest correlation (R2 of 0.

View Article and Find Full Text PDF

Psychotic disorders, such as schizophrenia and bipolar disorder, pose significant diagnostic challenges with major implications on mental health. The measures of resting-state fMRI spatiotemporal complexity offer a powerful tool for identifying irregularities in brain activity. To capture global brain connectivity, we employed information-theoretic metrics, overcoming the limitations of pairwise correlation analysis approaches.

View Article and Find Full Text PDF

Single-omics approaches often provide a limited view of complex biological systems, whereas multiomics integration offers a more comprehensive understanding by combining diverse data views. However, integrating heterogeneous data types and interpreting the intricate relationships between biological features-both within and across different data views-remains a bottleneck. To address these challenges, we introduce COSIME (Cooperative Multi-view Integration and Scalable Interpretable Model Explainer).

View Article and Find Full Text PDF

Background: Sepsis is a severe complication in leukemia patients, contributing to high mortality rates. Identifying early predictors of sepsis is crucial for timely intervention. This study aimed to develop and validate a predictive model for sepsis risk in leukemia patients using machine learning techniques.

View Article and Find Full Text PDF

We have developed a portfolio of antibody-based modules that can be prefabricated as standalone units and snapped together in plug-and-play fashion to create uniquely powerful multifunctional assemblies. The basic building blocks are derived from multiple pairs of native and modified Fab scaffolds and protein G (PG) variants engineered by phage display to introduce high pair-wise specificity. The variety of possible Fab-PG pairings provides a highly orthogonal system that can be exploited to perform challenging cell biology operations in a straightforward manner.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!