Total tyrosine kinase activity is often elevated in both cytosolic and membrane fractions of malignant breast tissue and correlates with a decrease in disease-free survival. Breast tumor kinase (Brk; protein tyrosine kinase 6) is a soluble tyrosine kinase that was cloned from a metastatic breast tumor and found to be overexpressed in a majority of breast tumors. Herein, we show that Brk is overexpressed in 86% of invasive ductal breast tumors and coexpressed with ErbB family members in breast cancer cell lines. Additionally, the ErbB ligand, heregulin, activates Brk kinase activity. Knockdown of Brk by stable expression of short hairpin RNA (shRNA) in T47D breast cancer cells decreases proliferation and blocks epidermal growth factor (EGF)- and heregulin-induced activation of Rac GTPase, extracellular signal-regulated kinase (ERK) 5, and p38 mitogen-activated protein kinase (MAPK) but not Akt, ERK1/2, or c-Jun NH(2)-terminal kinase. Furthermore, EGF- and heregulin-induced cyclin D1 expression is dependent on p38 signaling and inhibited by Brk shRNA knockdown. The myocyte enhancer factor 2 transcription factor target of p38 MAPK and ERK5 signaling is also sensitive to altered Brk expression. Finally, heregulin-induced migration of T47D cells requires p38 MAPK activity and is blocked by Brk knockdown. These results place Brk in a novel signaling pathway downstream of ErbB receptors and upstream of Rac, p38 MAPK, and ERK5 and establish the ErbB-Brk-Rac-p38 MAPK pathway as a critical mediator of breast cancer cell migration.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-06-3409DOI Listing

Publication Analysis

Top Keywords

tyrosine kinase
16
breast cancer
16
breast tumor
12
p38 mapk
12
breast
10
kinase
10
tumor kinase
8
protein tyrosine
8
heregulin-induced activation
8
cancer cells
8

Similar Publications

Background: Immunotherapy is a significant risk factor for severe COVID-19 in multiple myeloma (MM) patients. Understanding how immunotherapies lead to severe COVID-19 is crucial for improving patient outcomes.

Methods: Human protein microarrays were used to examine the expression of 440 protein molecules in MM patients treated with bispecific T-cell engagers (BiTe) (n = 9), anti-CD38 monoclonal antibodies (mAbs) (n = 10), and proteasome inhibitor (PI)-based regimens (n = 10).

View Article and Find Full Text PDF

Human carbonic anhydrase IX (CAIX) plays a key role in maintaining pH homeostasis of malignant neoplasms, thus creating a favorable microenvironment for the growth, invasion, and metastasis of tumor cells. Recent studies have established that inhibition of CAIX expressed on the surface of tumor cells significantly increases the efficacy of classical chemotherapeutic agents and makes it possible to suppress the resistance of tumor cells to chemotherapy, as well as to increase their sensitivity to drugs (in particular, to reduce the required dose of cytostatic agents). In this work, we studied the ability of new CAIX inhibitors based on substituted 1,2,4-oxadiazole-containing primary aromatic sulfonamides, to potentiate the cytostatic effect of gefitinib (selective inhibitor of epidermal growth factor receptor tyrosine kinase domain) under hypoxic conditions.

View Article and Find Full Text PDF

To investigate the impact of SMARCA4 mutations on the outcomes of patients with advanced lung adenocarcinoma with epidermal growth factor receptor (EGFR) mutations. In the Memorial Sloan Kettering Cancer Center (MSK) MetTropism study, 960 patients with advanced EGFR-mutated lung adenocarcinoma were screened and included in the MSK cohort, composing of 313 males and 647 females, with a median [(, )] age of 64 (56, 72) years. A retrospective analysis was conducted on the data of 178 patients with advanced EGFR-mutated lung adenocarcinoma who received EGFR tyrosine kinase inhibitors (TKIs) treatment in the Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, from January 2018 to December 2022.

View Article and Find Full Text PDF

AhASRK1, a peanut dual-specificity kinase that activates the Ca-ROS-MAPK signalling cascade to mediate programmed cell death induced by aluminium toxicity via ABA.

Plant Physiol Biochem

January 2025

Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, College of Agriculture, GuangXi University, Nanning, 530004, China; National Demonstration Center for Experimental Plant Science Education/College of Agriculture, Nanning, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China. Electronic address:

Aluminium (Al)-induced programmed cell death (PCD) is thought to be a main cause of Al phytotoxicity. However, the underlying mechanism by which Al induces PCD in plants is unclear. In this study, we characterized the function of AhASRK1 (Aluminum Sensitive Receptor-like protein Kinase1), an Al-induced LRR-type receptor-like kinase gene.

View Article and Find Full Text PDF

The current work presents comparative assessment of affinity of the designed DNA aptamers for extracellular domain of the human epidermal growth factor receptor (EGFR*). The affinity data of the 20 previously published aptamers are summarized. Diversity of the aptamer selection methods and techniques requires unification of the comparison algorithms, which is also necessary for designing aptamers used in the post-selection fitting to the target EGFR* protein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!