Interactions between membrane bilayers and peptides/proteins are ubiquitous throughout a cell. To determine the structure of membrane bilayers and the associated peptides/proteins, model systems such as supported lipid bilayers are often used. It has been difficult to directly investigate the interactions between a single membrane bilayer and peptides/proteins without exogenous labeling. In this work we demonstrate that sum frequency generation vibrational spectroscopy can be employed to study the interactions between peptides/proteins and a single lipid bilayer in real time, in situ, and without exogenous labeling. Using melittin and a dipalmitoyl phosphatidylglycerol bilayer as a model system, we monitored the C-H and C-D stretching signals from isotopically symmetric or asymmetric dipalmitoyl phosphatidylglycerol bilayers during their interaction with melittin. It has been found that the extent and kinetics of bilayer perturbation induced by melittin are very sensitive to melittin concentration. Such concentration dependence is correlated to melittin's mode of action. Melittin is found to function via the early and late stage of the carpet model at low and high concentrations, respectively, whereas the toroidal model is probable at intermediate concentrations. This research illustrates the potential of sum frequency generation as a biophysical technique to monitor individual leaflet structure of lipid bilayers in real time during their interactions with biomolecules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1913150PMC
http://dx.doi.org/10.1529/biophysj.106.099739DOI Listing

Publication Analysis

Top Keywords

sum frequency
12
frequency generation
12
lipid bilayer
8
interaction melittin
8
generation vibrational
8
vibrational spectroscopy
8
membrane bilayers
8
lipid bilayers
8
exogenous labeling
8
real time
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!