Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Lipid bilayers are two-dimensional fluids. Here, the effect of monovalent ion concentration on the mixing, and consequently the organization, of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dioleoyl-sn-glycero-3-phosphate (DOPA) bilayers has been examined. Epifluorescence microscopy was used to visualize the organization. Fluorescence recovery after photobleaching and attenuated total reflection-Fourier transform infrared spectroscopy were used to assess the fluidity of the lipids. At high ionic strength the DOPC and DOPA lipids appear uniformly mixed. Upon lowering the ionic strength, rapid separation is observed. The DOPA-rich regions appear fractal-like and exhibit hysteresis in their properties. The lipids freely exchange between the two regions. These experiments clearly demonstrate the significant effect that electrostatics can have on membrane organization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1948047 | PMC |
http://dx.doi.org/10.1529/biophysj.107.104224 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!