The cellular prion protein (PrP(C)) is a copper binding protein. The molecular features of the Cu(2+) binding sites have been investigated and characterized by spectroscopic experiments on PrP(C)-derived peptides and the correctly folded human full-length PrP(C) (hPrP-[23-231]). These experiments allowed us to distinguish two different configurations of copper binding. The different copper complexes depend on sequence context, buffer conditions and stoichiometry of copper. The combined information of spectroscopic data from our EXAFS, EPR and ENDOR experiments was used to create models for these two copper complexes. A large number of conformations of these models were calculated using molecular mechanics computations, and the simulated spectra of these structures were compared with our experimental data. Common features and differences of the copper binding motifs are discussed in this paper and it remains for future investigations to study whether different configurations are associated with different functional states of PrP(C).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetmic.2007.04.008DOI Listing

Publication Analysis

Top Keywords

copper binding
12
cu2+ binding
8
prion protein
8
copper complexes
8
copper
6
binding
5
configuration cu2+
4
binding region
4
region full-length
4
full-length human
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!