The distinguishing feature of adult stem cells is their extraordinary capacity to divide prior to the onset of senescence. While stratified epithelia such as skin, prostate, and breast are highly regenerative and account disproportionately for human cancers, genes essential for the proliferative capacity of their stem cells remain unknown. Here we analyze p63, a gene whose deletion in mice results in the catastrophic loss of all stratified epithelia. We demonstrate that p63 is strongly expressed in epithelial cells with high clonogenic and proliferative capacity and that stem cells lacking p63 undergo a premature proliferative rundown. Additionally, we show that p63 is dispensable for both the commitment and differentiation of these stem cells during tissue morphogenesis. Together, these data identify p63 as a key, lineage-specific determinant of the proliferative capacity in stem cells of stratified epithelia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2007.02.045DOI Listing

Publication Analysis

Top Keywords

stem cells
24
stratified epithelia
16
proliferative capacity
12
capacity stem
12
essential proliferative
8
cells stratified
8
cells
7
p63
6
stem
6
proliferative
5

Similar Publications

Purpose Of Review: The canonical pathogenesis of spondyloarthritis (SpA) involves inflammation driven by HLA-B27, type 3 immunity, and gut microbial dysregulation. This review based on information presented at the SPARTAN meeting highlights studies on the pathogenesis of SpA from the past year, focusing on emerging mechanisms such as the roles of microbe-derived metabolites, microRNAs (miRNAs) and cytokines in plasma exosomes, specific T cell subsets, and neutrophils.

Recent Findings: The induction of arthritis in a preclinical model through microbiota-driven alterations in tryptophan catabolism provides new insights as to how intestinal dysbiosis may activate disease via the gut-joint axis.

View Article and Find Full Text PDF

Objective: Breastfeeding is associated with improved health outcomes in infancy and throughout adulthood as breast milk encompasses diverse immune-active factors that affect the ontogeny of the immune system in breastfed (BF) infants. Nevertheless, the impact of infant feeding on the immune system is poorly understood, and a comprehensive understanding of immune system development in human infants is lacking. In this observational study, we addressed the effects of different infant feeding approaches on cell populations and parameters in the peripheral blood of infants to gain insight into the innate and adaptive arms of the immune system.

View Article and Find Full Text PDF

Aneurysm Is Restricted by CD34 Cell-Formed Fibrous Collars Through the PDGFRb-PI3K Axis.

Adv Sci (Weinh)

December 2024

Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.

Aortic aneurysm is a life-threatening disease caused by progressive dilation of the aorta and weakened aortic walls. Its pathogenesis involves an imbalance between connective tissue repair and degradation. CD34 cells comprise a heterogeneous population that exhibits stem cell and progenitor cell properties.

View Article and Find Full Text PDF

Background: Canine adipose-derived mesenchymal stem cells (cAD-MSCs) demonstrate promising tissue repair and regeneration capabilities. However, the procurement and preservation of these cells or their secreted factors for therapeutic applications pose a risk of viral contamination, and the consequences for cAD-MSCs remain unexplored. Consequently, this research sought to assess the impact of canid alphaherpesvirus 1 (CHV) on the functional attributes of cAD-MSCs, including gene expression profiles and secretome composition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!