Injection of hyperpolarized (13)C-labelled pyruvate ((13)C pyruvate) is under evaluation as an agent for medical metabolic imaging by measuring formation of (13)C lactate using magnetic resonance spectroscopy of the (13)C nuclei. A quantitative method for analysis of these (13)C-labelled substances in dog blood was needed as part of the development of this agent and we here describe a liquid chromatography-mass spectrometry method for that purpose. Immediately after blood collection, the blood proteins were precipitated using methanol added internal standard ([U-(13)C]pyruvate and [U-(13)C]lactate). Prior to analysis, the compounds were derivatized using 3-nitrophenylhydrazine. Following separation on a Supelco Discovery HS C18 column, (13)C pyruvate and (13)C lactate were detected using negative electrospray ionization mass spectrometry. Calibration standards (4.5-4500 microM (13)C pyruvate and 9-9000 microM (13)C lactate) and added internal standard were used to make the calibration curves, which were fitted to a non-linear equation y=a+bx+cx(2) and weighted with a weighting factor of 1/y(2). The analytical lower limit of quantification of (13)C pyruvate and (13)C lactate was 4.5 and 9 microM, respectively. The total precision of the method was below 9.2% for (13)C pyruvate and below 5.8% for (13)C lactate. The accuracy of the method showed a relative error less than 2.4% for (13)C pyruvate and less than 6.3% for (13)C lactate. The recoveries were in the range 93-115% for (13)C pyruvate and 70-111% for (13)C lactate. Both substances were stable in protein-free supernatant when stored for up to 3 weeks in a -20 degrees C freezer, during three freeze/thaw cycles, and when stored in an autosampler for at least 30 h.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jpba.2007.04.001 | DOI Listing |
Anal Methods
January 2025
Department of Health Technology, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark.
Antibiotic tolerance presents a significant challenge in eradicating bacterial infections, as tolerant strains can survive antibiotic treatment, contributing to the recurrence of infections and the development of resistance. However, unlike antibiotic resistance, tolerance is not detectable by standard susceptibility assays such as minimal inhibitory concentration (MIC) tests. Consequently, antibiotic tolerance often goes unnoticed in clinical settings.
View Article and Find Full Text PDFIEEE Access
November 2024
University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
The achievable spatial resolution of C metabolic images acquired with hyperpolarized C-pyruvate is worse than H images typically by an order of magnitude due to the rapidly decaying hyperpolarized signals and the low gyromagnetic ratio of C. This study is to develop and characterize a volumetric patch-based super-resolution reconstruction algorithm that enhances spatial resolution C cardiac MRI by utilizing structural information from H MRI. The reconstruction procedure comprises anatomical segmentation from high-resolution H MRI, calculation of a patch-based weight matrix, and iterative reconstruction of high-resolution multi-slice C MRI.
View Article and Find Full Text PDFBioorg Chem
January 2025
Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Ahmedabad (NIPER-A), Gandhinagar, Gujarat, India. Electronic address:
Glioblastoma (GB), the most aggressive and life-threatening primary brain tumor in adults, poses significant therapeutic challenges. Tumor pyruvate kinase M2 (PKM2) has been implicated in the proliferation and survival of glioma cells. In this study, we designed and synthesized a series of 23 novel tetrazole-based derivatives.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.
Pyruvate is situated at the intersection of oxidative phosphorylation (OXPHOS) and glycolysis, which are the primary energy-producing pathways in cells. Cancer therapies targeting these pathways have been previously documented, indicating that inhibiting one pathway may lead to functional compensation by the other, resulting in an insufficient antitumor effect. Thus, effective cancer treatment necessitates concurrent and comprehensive suppression of both.
View Article and Find Full Text PDFOncogene
December 2024
Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!