More and more people in Bangladesh have recently become aware of the risk of drinking arsenic-contaminated groundwater, and have been trying to obtain drinking water from less arsenic-contaminated sources. In this study, arsenic intakes of 18 families living in one block of a rural village in an arsenic-affected district of Bangladesh were evaluated to investigate their actual arsenic intake via food, including from cooking water, and to estimate the contribution of each food category and of drinking water to the total arsenic intake. Water consumption rates were estimated by the self-reporting method. The mean drinking water intake was estimated as about 3 L/d without gender difference. Arsenic intakes from food were evaluated by the duplicate portion sampling method. The duplicated foods from each family were divided into four categories (cooked rice, solid food, cereals for breakfast, and liquid food), and the arsenic concentrations of each food category and of the drinking water were measured. The mean arsenic intake from water and food by all 18 respondents was 0.15 +/-0.11 mg/d (range, 0.043 - 0.49), that by male subjects was 0.18 +/- 0.13 mg/d (n = 12) and that by female subjects was 0.096 +/- 0.007 mg/d (n = 6). The average contributions to the total arsenic intake were, from drinking water, 13%; liquid food, 4.4%; cooked rice, 56%; solid food, 11%; and cereals, 16%. Arsenic intake via drinking water was not high despite the highly contaminated groundwater in the survey area because many families had changed their drinking water sources to less-contaminated ones. Instead, cooked rice contributed most to the daily arsenic intake. Use of contaminated water for cooking by several families was suspected based on comparisons of arsenic concentrations between drinking water and liquid food, and between rice before and after cooking. Detailed investigation suggested that six households used contaminated water for cooking but not drinking, leading to an increase of arsenic intake via arsenic-contaminated cooking water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2007.03.019 | DOI Listing |
Biol Trace Elem Res
January 2025
College of Arts & Sciences, American University of Kuwait, P.O. Box 3323, 13034, Safat, Kuwait.
Infants are particularly vulnerable to exposure to toxic trace elements due to their developmental stage and behaviors such as mouthing and chewing on toys. Chemical exposure to heavy metals in infants' toys is a significant concern as it poses a threat to their health and well-being. Therefore, quality control measures are essential to prevent infants' exposure to potentially harmful metals.
View Article and Find Full Text PDFJ Health Popul Nutr
January 2025
Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
Background: The human gut microbiota has a critical role in several aspects of host homeostasis, such as immune development, metabolism, nutrition, and defense against pathogens during life. It can be sensitive to xenobiotics including drugs, diet, or even environmental pollutants, especially heavy metals (HMs). The findings of some previous studies are heterogeneous due to the inclusion of various types of study (human, and animal studies) and wide exposures (phthalate, bisphenol A, HMS, etc.
View Article and Find Full Text PDFJ Xenobiot
December 2024
Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India.
Addressing the consequences of exposure to endocrine-disrupting chemicals (EDCs) demands thorough research and elucidation of the mechanism by which EDCs negatively impact women and lead to breast cancer (BC). Endocrine disruptors can affect major pathways through various means, including histone modifications, the erroneous expression of microRNA (miRNA), DNA methylation, and epigenetic modifications. However, it is still uncertain if the epigenetic modifications triggered by EDCs can help predict negative outcomes.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Environmental Health Engineering, Khalkhal University of Medical Sciences, Khalkhal, Iran.
Heavy metals (HMs) may cause the generation of reactive oxygen species (ROS), which results in oxidative stress and eventually leads to an increase in cardiovascular diseases (CVD). The Hoveyzeh Cohort Study Center provided clinical data for cardiovascular cases. The collection of samples was done randomly.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Mumbai 400094, India. Electronic address:
Arsenic (As) is a potent carcinogen that enters the human food chain mainly through rice, which is one of the staple food crops worldwide. During February 2022, a market survey was conducted and 500 samples of rice grains were collected across 41 different locations in Mumbai/Navi-Mumbai. On the basis of grain As-accumulation, samples were grouped into three categories including low- (0-30 ng g DW), medium- (31-70 ng g DW) or high- (>71 ng g DW).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!