Measuring surface topography with scanning electron microscopy. I. EZEImage: a program to obtain 3D surface data.

Microsc Microanal

Centro de Investigación y Desarrollo en Ciencias Aplicadas Dr. Jorge J. Ronco (CINDECA) CONICET-UNLP, 47 No. 257-CC 59, 1900 La Plata, Argentina.

Published: April 2006

Scanning electron microscopy (SEM) is widely used in the science of materials and different parameters were developed to characterize the surface roughness. In a previous work, we studied the surface topography with fractal dimension at low scale and two parameters at high scale by using the variogram, that is, variance vs. step log-log graph, of a SEM image. Those studies were carried out with the FERImage program, previously developed by us. To verify the previously accepted hypothesis by working with only an image, it is indispensable to have reliable three-dimensional (3D) surface data. In this work, a new program (EZEImage) to characterize 3D surface topography in SEM has been developed. It uses fast cross correlation and dynamic programming to obtain reliable dense height maps in a few seconds which can be displayed as an image where each gray level represents a height value. This image can be used for the FERImage program or any other software to obtain surface topography characteristics. EZEImage also generates anaglyph images as well as characterizes 3D surface topography by means of a parameter set to describe amplitude properties and three functional indices for characterizing bearing and fluid properties.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S1431927606060028DOI Listing

Publication Analysis

Top Keywords

surface topography
20
scanning electron
8
electron microscopy
8
surface data
8
characterize surface
8
ferimage program
8
surface
7
topography
5
measuring surface
4
topography scanning
4

Similar Publications

The use of bioresorbable compositions has been considered a promising therapeutic approach for treating compromised bone tissues. Gellan gum (GG) is a predominant polysaccharide recognized for its exceptional biocompatibility and biodegradability, facile bio-fabrication, and customizable mechanical attributes, rendering it well-suited for developing versatile bone scaffolds. On the other hand, MXene nanosheets have been declared a representational filler to augment the osteogenic effect and amend the mechanical properties of the polymeric biomaterials.

View Article and Find Full Text PDF

Superficial lesions of the face are often treated with an electron beam and surface collimation utilizing a conformal lead shield with an opening around the region of treatment (ROT). To fabricate the lead shield, an imprint of the patient face is needed. Historically, this was achieved using a laborious and time-consuming process that involved a gypsum imprinted model (GIM) of the patient topography.

View Article and Find Full Text PDF

In this study, a new hybrid nanoparticle composed of magnesium hydroxide and copper oxide (Mg(OH)/CuO) with an optimized ratio of magnesium (Mg) to copper (Cu) was designed and incorporated into a 3D-printed scaffold made of polycaprolactone (PCL) and gelatin. These hybrid nanostructures (MCNs) were prepared using a green, solvent-free method. Their topography, surface morphology, and structural properties were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

Antimicrobial surfaces are a promising approach to reduce the spread of pathogenic microorganisms in various critical environments. To achieve high antimicrobial functionality, it is essential to consider the material-specific bactericidal mode of action in conjunction with bacterial surface interactions. This study investigates the effect of altered contact conditions on the antimicrobial efficiency of Cu surfaces against Escherichia coli and Staphylococcus aureus.

View Article and Find Full Text PDF

Rocky desertification (RD) is a severe phenomenon in karst areas, often referred to as "ecological cancer." However, studies on RD rarely include comparative analysis of different man-land relationship areas. This lack of analysis leads to difficulties in preventing and controlling RD in local areas with complex man-land relationships.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!