Molecular-dynamics simulations have been used to investigate the mechanism of induction of a mutant (revTetR) of the tetracycline repressor protein (TetR) that shows the reverse phenotype (i.e., it is induced in the absence of tetracyclines and not in their presence). Low-frequency, normal-mode analyses demonstrate that the reverse phenotype is reproduced by the simulations on the basis of criteria established for wild-type TetR. The reverse phenotype is caused by the fact that the DNA-binding heads in revTetR are closer than the ideal distance needed for DNA-binding when no inducer is present. This distance increases on binding an inducer. Whereas this distance increase makes the interhead distance too large in wild-type TetR, it increases to the ideal value in revTetR. Thus, the mechanism of induction is the same for the two proteins, but the consequences are reversed because of the smaller interhead distance in revTetR when no inducer is present.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp0674468DOI Listing

Publication Analysis

Top Keywords

reverse phenotype
16
mechanism induction
8
tetr reverse
8
wild-type tetr
8
inducer distance
8
interhead distance
8
distance
5
molecular dynamics
4
dynamics characterization
4
characterization structures
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!