Oxidation of methionine residues is involved in several biochemical processes and in degradation of therapeutic proteins. The relationship between conformational stability and methionine oxidation in recombinant human interleukin-1 receptor antagonist (rhIL-1ra) was investigated to document how thermodynamics of unfolding affect methionine oxidation in proteins. Conformational stability of rhIL-1ra was monitored by equilibrium urea denaturation, and thermodynamic parameters of unfolding (DeltaGH2O, m, and Cm) were estimated at different temperatures. Methionine oxidation induced by hydrogen peroxide at varying temperatures was monitored during "coincubation" of rhIL-1ra with peptides mimicking specific regions of the reactive methionine residues in the protein. The coincubation study allowed estimation of oxidation rates in protein and peptide at each temperature from which normalized oxidation rate constants and activation energies were calculated. The rate constants for buried Met-11 in the protein were lower than for methionine in the peptide with an associated increase in activation energy. The rate constants and activation energy of solvent exposed methionines in protein and peptide were similar. The results showed that conformational stability, monitored using the Cm value, has an effect on oxidation rates of buried methionines. The rate constant of buried Met-11 correlated well with the Cm value but not DeltaGH2O. No correlation was observed for the oxidation rates of solvent-exposed methionines with any thermodynamic parameters of unfolding. The findings presented have implications in protein engineering, in design of accelerated stability studies for protein formulation development, and in understanding disease conditions involving protein oxidation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi700321gDOI Listing

Publication Analysis

Top Keywords

conformational stability
16
methionine residues
12
methionine oxidation
12
oxidation rates
12
rate constants
12
oxidation
11
oxidation methionine
8
recombinant human
8
human interleukin-1
8
interleukin-1 receptor
8

Similar Publications

Aptamers bind to their targets with exceptional affinity and specificity. However, their intracellular application is hampered by the lack of knowledge about the effect of the cellular milieu on the RNA structure/stability. In this study, cellular crowding was mimicked using polyethylene glycol (PEG), and the crucial role of Mg ions in stabilizing the structure of an RNA aptamer was investigated.

View Article and Find Full Text PDF

Two porphyrin-based polymeric frameworks, SnP-BTC and SnP-BTB, as visible light photocatalysts for wastewater remediation were prepared by the solvothermal reaction of -dihydroxo-[5,15,10,20-tetrakis(phenyl)porphyrinato]tin(IV) (SnP) with 1,3,5-benzenetricarboxylic acid (HBTC) and 1,3,5-tris(4-carboxyphenyl)benzene (HBTB), respectively. The strong bond between the carboxylic acid group of HBTC and HBTB with the axial hydroxyl moiety of SnP leads to the formation of highly stable polymeric architectures. Incorporating the carboxylic acid group onto the surface of SnP changes the conformational frameworks as well as produces rigid structural transformation that includes permanent porosity, good thermodynamic stability, interesting morphology, and excellent photocatalytic degradation activity against AM dye and TC antibiotic under visible light irradiation.

View Article and Find Full Text PDF

Exploring the therapeutic potential of natural compounds against hepatocellular carcinoma (HCC): a computational approach.

EXCLI J

November 2024

Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si, 13120, Korea.

Hepatocellular carcinoma (HCC) is the fifth leading cause of cancer related deaths globally. Despite advancements in treatment, drug resistance and adverse side effects have spurred the search for novel therapeutic strategies. This study aimed to investigate how the can inhibit key targets involved in HCC progression.

View Article and Find Full Text PDF

Adoptive cell therapies (ACT) have shown reduced efficacy against solid tumor malignancies compared to hematologic malignancies, partly due to the immunosuppressive nature of the tumor microenvironment (TME). ACT efficacy may be enhanced with pleiotropic cytokines that remodel the TME; however, their expression needs to be tightly controlled to avoid systemic toxicities. Here we show T cells can be armored with membrane-bound cytokines with surface expression regulated using drug-responsive domains (DRDs) developed from the 260-amino acid protein human carbonic anhydrase 2 (CA2).

View Article and Find Full Text PDF

Capturing eukaryotic ribosome dynamics in situ at high resolution.

Nat Struct Mol Biol

January 2025

Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.

Many protein complexes are highly dynamic in cells; thus, characterizing their conformational changes in cells is crucial for unraveling their functions. Here, using cryo-electron microscopy, 451,700 ribosome particles from Saccharomyces cerevisiae cell lamellae were obtained to solve the 60S region to 2.9-Å resolution by in situ single-particle analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!