Bacteria monitor their population densities using low-molecular-weight ligands in a process known as quorum sensing. At sufficient cell densities, bacteria can change their mode of growth and behave as multicellular communities that play critical roles in both beneficial symbioses and the pathogenesis of infectious disease. The development of non-native ligands that can block quorum-sensing signals has emerged as a promising new strategy to attenuate these divergent outcomes. Here, we report that N-phenylacetanoyl-L-homoserine lactones are capable of either inhibiting or, in some cases, strongly inducing quorum sensing in the bacterial symbiont Vibrio fischeri. Moreover, simple structural modifications to these ligands have remarkable effects on activity. These studies have revealed one of the first synthetic superagonists of quorum sensing, N-(3-nitro-phenylacetanoyl)-L-homoserine lactone. Together, these ligands represent a powerful new class of chemical probes with the potential to significantly expand the current understanding of quorum sensing and its role in host/bacteria interactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2635011 | PMC |
http://dx.doi.org/10.1021/cb700036x | DOI Listing |
J Appl Microbiol
January 2025
G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS; 690022 Vladivostok, Russia.
Aims: The aim of this study was to evaluate the antioxidant and anti-inflammatory effects of marine fungal cerebroside flavuside B (FlaB) on Staphylococcus aureus-infected keratinocytes in in vitro skin wounds and to identify FlaB targets in bacterial and human cells.
Methods And Results: A combination of ELISA, plate spectrofluorimetry, and flow cytometry with fluorescence dye staining, scratch assay, and real-time cell imaging techniques was used to investigate the effects of FlaB on S. aureus-infected HaCaT keratinocytes.
Drug Des Devel Ther
January 2025
Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.
In recent years, the incidence of fungal infections has been rising annually, especially among immunocompromised populations, posing a significant challenge to public health. Although antifungal medications provide some relief, the escalating problem of resistance sharply curtails their effectiveness, presenting an urgent clinical dilemma that demands immediate attention. Research has shown that fungal resistance is closely related to quorum sensing (QS), and QS inhibitors (QSIs) are considered an effective solution to this issue.
View Article and Find Full Text PDFJ Virol
December 2024
College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, Beijing, China.
Unlabelled: Quorum sensing (QS) can regulate diverse critical phenotypic responses in (), enabling bacterial adaptation to external environmental fluctuations and optimizing population advantages. While there is emerging evidence of QS's involvement in influencing phage infections, our current understanding remains limited, necessitating further investigation. In this study, we isolated and characterized a novel phage designated as BUCT640 that infected PAO1.
View Article and Find Full Text PDFmSystems
December 2024
River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland.
Unlabelled: Glacier-fed streams are permanently cold, ultra-oligotrophic, and physically unstable environments, yet microbial life thrives in benthic biofilm communities. Within biofilms, microorganisms rely on secondary metabolites for communication and competition. However, the diversity and genetic potential of secondary metabolites in glacier-fed stream biofilms remain poorly understood.
View Article and Find Full Text PDFNat Prod Res
January 2025
Vocational School of Health Services, Suleyman Demirel University, Isparta, Turkey.
The study aims to evaluate the Quorum Sensing (QS) system inhibition against some Gram-positive and Gram-negative bacteria detected by molecular modeling of R. cathartica L. plant extract.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!