This study was designed to screen for differential expression genes in bone marrow cells of mice exposed to radon inhalation. Based upon established pathological findings in mouse, differential screening of gene expressions was conducted by using the SSH method. Among 285 cDNA clones selected from both forward- and reverse subtracted libraries, 45 were chosen for their differential expressions based on reverse Northern blot and quantitative real-time PCR analysis. Of these, up-regulation of the mRNA levels of E-cadherin and down-regulation of the replication protein A1 (RPA1) and casein kinase 1 delta (CKI delta) were also verified by a quantitative real-time PCR. Biological roles of these obtained cDNAs are described and the results of the screening may provide important clues for further investigations of the adverse molecular events induced by radon exposure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15287390701290766 | DOI Listing |
Psychiatry Clin Psychopharmacol
December 2024
The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
Background: This study aimed to investigate miRNAs and upstream regulatory transcription factors involved in schizophrenia (SZ) pathogenesis.
Methods: Differential expression of miRNAs and genes in SZ patients was investigated utilizing the gene expression omnibus dataset, gene ontology annotations, and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. Real-time quantitative polymerase chain reaction experiments were conducted to validate the predictive screening of regulatory genes in peripheral blood samples from 20 SZ patients and 20 healthy controls.
Viruses
November 2024
Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy.
The mechanisms of the innate immunity control of equine infectious anemia virus in horses are not yet widely described. Equine monocytes isolated from the peripheral blood of three Equine infectious anemia (EIA) seronegative horses were differentiated in vitro into macrophages that gave rise to mixed cell populations morphologically referable to M1 and M2 phenotypes. The addition of two equine recombinant cytokines and two EIA virus reference strains, Miami and Wyoming, induced a more specific cell differentiation, and as for other species, IFNγ and IL4 stimulation polarized horse macrophages respectively towards the M1 and the M2 phenotypes.
View Article and Find Full Text PDFVaccines (Basel)
November 2024
Department of R&D, Shanghai HRAIN Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong, Shanghai 201210, China.
The emergence of chimeric antigen receptor T-cell (CAR-T) immunotherapy holds great promise in treating hematologic malignancies. While advancements in CAR design have enhanced therapeutic efficacy, the time-consuming manufacturing process has not been improved in the commercial production of CAR-T cells. In this study, we developed a "DASH CAR-T" process to manufacture CAR-T cells in 72 h and found the excelling anti-tumor efficacy of DASH CAR-T cells over conventionally manufactured CAR-T cells.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
Background/objectives: In this study, HECP2k polymer, polyethylenimine2k (PEI2k)-modified hydroxyethyl cellulose (HEC) was utilized to form the nanocomplexes with receptor activator of nuclear factor k-B (RANK) siRNA and zoledronate (Zol) for osteoclast inhibition. HECP2k/(RANK siRNA + Zol) nanocomplexes prepared by simple mixing were anticipated to overcome the low transfection efficiency of siRNA and the low bioavailability of Zol.
Methods: The characterization of both HECP2k/(pDNA + Zol) nanocomplexes and HECP2k/(RANK siRNA + Zol) nanocomplexes was performed.
Pharmaceutics
December 2024
Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.
Background: The clinical efficacies of anticancer drugs are limited by non-selective toxic effects on healthy tissues and low bioavailability in tumor tissue. Therefore, the development of vehicles that can selectively deliver and release drugs at the tumor site is critical for further improvements in patient survival.
Methods: We prepared a CEC nano-drug delivery system, CEC@ZIF-8, with a zeolite imidazole framework-8 (ZIF-8) as a carrier, which can achieve the response of folate receptor (FR).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!