The vascular endothelium is an attractive target for gene therapy because of its accessibility and its importance in the pathophysiology of a wide range of cardiovascular conditions. In general, viral methods have been shown to be very effective at delivering genes to endothelium. The immunogenicity and pathogenicity associated with viral vectors have led increased efforts to seek alternative means of 'ferrying' therapeutic genes to endothelium or to decrease the short-comings of viral vectors. This paper reviews developments in non-viral technology. In addition, discussion also covers the mechanisms whereby existing chemical vectors deliver DNA to cells. Understanding the pathways of vector internalisation and intracellular traffic is important in developing strategies to improve vector technology. The authors propose that the chemical vector may represent a robust and versatile technology to 'ferry' therapeutic genes to vascular endothelium in order to modify the endothelial dysfunction associated with many cardiovascular diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1517/14712598.7.5.627 | DOI Listing |
Eur J Neurol
January 2025
Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden.
Background And Purpose: Patients with active cancer face an increased risk of ischemic stroke. Also, stroke may be an initial indicator of cancer. In patients with large vessel occlusion (LVO) stroke treated with thrombectomy, analysis of the clot composition may contribute new insights into the pathological connections between these two conditions.
View Article and Find Full Text PDFAnalyst
January 2025
Jagiellonian University, Faculty of Chemistry, Department of Chemical Physics, Gronostajowa 2 St, 30-387 Krakow, Poland.
Since their approval, tyrosine kinase inhibitors (TKIs) have been widely used in antitumor therapy for chronic myeloblastic leukemia. Despite being approved by the FDA in 2001 to treat a rare cancer called chronic myeloid leukemia (CML), imatinib and other TKIs remain subjects of research for several reasons, such as their long-term effects, resistance, or molecular mechanisms. This study uses Raman and fluorescence imaging to investigate the cytotoxic effects of two TKIs, imatinib and dasatinib, on human aortic endothelial cells (HAECs).
View Article and Find Full Text PDFCurr Med Chem
January 2025
3rd Department of Cardiology, General Hospital of Thoracic Diseases 'Sotiria', National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
Arterial hypertension is a silent and progressive disease with deleterious vascular implications on all target organs, including the heart, the brain, the kidneys, and the eyes. Oxidative stress, defined as the overproduction of Reactive Oxygen Species (ROS) over antioxidants, is capable of deteriorating not only the normal endothelial but also the cellular function with further cardiovascular implications. Xanthine oxidase activity, NADPH oxidase overexpression, and ROS production lead to hypertension and high arterial tone, culminating in end-organ damage.
View Article and Find Full Text PDFJ Thromb Haemost
January 2025
Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK.
Background: Blood clot formation, triggered by vascular injury, is crucial for haemostasis and thrombosis. Blood clots are composed mainly of fibrin fibres, platelets and red blood cells (RBCs). Recent studies show that clot surface also develops a fibrin film, which provides protection against wound infection and retains components such as RBCs within the clot.
View Article and Find Full Text PDFCytokine
January 2025
Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara 06490, Türkiye.
Endogenous and exogenous factors play a role in endothelial dysfunction. Inflammation, leukocyte adhesion-aggregation, abnormal vascular proliferation, atherosclerosis, and hypertension are among the endogenous factors. Another factor that affects endothelial dysfunction is exogenous factors such as drug treatments, smoking, alcohol, and nutrition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!