Optical sensor for interstitial pH measurements.

J Biomed Opt

Nello Carrara Institute of Applied Physics, CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.

Published: July 2007

An optical fiber sensor for measuring the pH in interstitial fluid is described. Microdialysis is the approach followed for extracting the sample from the subcutaneous adipose tissue. The interstitial fluid drawn flows through a microfluidic circuit formed by a microdialysis catheter in series with a pH glass capillary. The pH indicator (phenol red) is covalently immobilized on the internal wall of the glass capillary. An optoelectronic unit that makes use of LEDs and photodetectors is connected to the sensing capillary by means of optical fibers. Optical fibers are used to connect the interrogating unit to the sensing capillary. A resolution of 0.03 pH units and an accuracy of 0.07 pH units are obtained. Preliminary in vivo tests are carried out in pigs with altered respiratory function.

Download full-text PDF

Source
http://dx.doi.org/10.1117/1.2714807DOI Listing

Publication Analysis

Top Keywords

interstitial fluid
8
glass capillary
8
sensing capillary
8
optical fibers
8
optical
4
optical sensor
4
sensor interstitial
4
interstitial measurements
4
measurements optical
4
optical fiber
4

Similar Publications

TGR5 attenuates DOCA-salt hypertension through regulating histone H3K4 methylation of ENaC in the kidney.

Metabolism

January 2025

Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. Electronic address:

Epithelial sodium channel (ENaC), located in the collecting duct principal cells of the kidney, is responsible for the reabsorption of sodium and plays a critical role in the regulation of extracellular fluid volume and consequently blood pressure. The G protein-coupled bile acid receptor (TGR5) is a membrane receptor mediating effects of bile acid and is implicated in kidney diseases. The current study aims to investigate whether TGR5 activation in the kidney regulated ENaC expression and potential mechanism.

View Article and Find Full Text PDF

Extracellular peroxiredoxin 6 released from alveolar epithelial cells as a DAMP drives macrophage activation and inflammatory exacerbation in acute lung injury.

Int Immunopharmacol

January 2025

Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032, China; Department of Pulmonary Medicine, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, Fujian 361015, China; Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Respiratory Research Institute, Shanghai 200032, China.

Acute respiratory distress syndrome (ARDS) is featured with acute lung inflammatory injury. Our prospective study found that higher levels of peroxiredoxin 6(PRDX6) were detected in bronchoalveolar lavage (BAL) fluid from ARDS patients. Elevated PRDX6 was also correlated with monocytic activation and poor prognosis in ARDS patients.

View Article and Find Full Text PDF

Disruption of developmental processes affecting the fetal lung leads to pulmonary hypoplasia. Pulmonary hypoplasia results from several conditions including congenital diaphragmatic hernia (CDH) and oligohydramnios. Both entities have high morbidity and mortality, and no effective therapy that fully restores normal lung development.

View Article and Find Full Text PDF

Continuously flowing wastewater-treatment processes can be configured for biological and physical selection to form and retain large biological aggregates (LBAs), along with suspended biomass that contains ordinary biological flocs and biomass that has detached from the LBAs. Suspended biomass and LBAs have different solids residence times (SRTs) and mass-transport resistances. Here, mathematical sub-models that describe metabolic processes, a 1-D biofilm, and spherical carriers that can migrate throughout a wastewater-treatment process were combined to simulate a full-scale demonstration train having anaerobic, anoxic, and oxic zones, as well as side-stream enhanced biological phosphorus removal.

View Article and Find Full Text PDF

Functional abnormalities of the glymphatic system in cognitive disorders.

Neural Regen Res

January 2025

Department of Neurolougy, Zhejiang Hospital, Hangzhou, Zhejiang Province, China.

Various pathological mechanisms represent distinct therapeutic targets for cognitive disorders, but a balance between clearance and production is essential for maintaining the stability of the brain's internal environment. Thus, the glymphatic system may represent a common pathway by which to address cognitive disorders. Using the established model of the glymphatic system as our foundation, this review disentangles and analyzes the components of its clearance mechanism, including the initial inflow of cerebrospinal fluid, the mixing of cerebrospinal fluid with interstitial fluid, and the outflow of the mixed fluid and the clearance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!