The retinal injury threshold dose for laser exposure varies as a function of the irradiated area on the retina. Zuclich reported thresholds for laser-induced retinal injury from 532 nm, nanosecond-duration laser exposures that varied as the square of the diameter of the irradiated area on the retina. We report data for 0.1-s-duration retinal exposures to 514-nm, argon laser irradiation. Thresholds for macular injury at 24 h are 1.05, 1.40, 1.77, 3.58, 8.60, and 18.6 mJ for retinal exposures at irradiance diameters of 20, 69, 136, 281, 562, and 1081 microm, respectively. These thresholds vary as the diameter of the irradiated retinal area. The relationship between the retinal injury threshold and retinal irradiance diameter is a function of the exposure duration. The 0.1-s-duration data of this experiment and the nanosecond-duration data of Zuclich show that the ED(50) (50% effective dose) for exposure to a highly collimated beam does not decrease relative to the value obtained for a retinal irradiance diameter of 100 microm. These results can form the basis to improve current laser safety guidelines in the nanosecond-duration regime. These results are relevant for ophthalmic devices incorporating both wavefront correction and retinal exposure to a collimated laser.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1117/1.2714810 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!