The wide range of protein concentrations found in biological matrixes presents a formidable analytical challenge in proteomics experiments. It is predicted that low-abundance proteins are the likely clinically relevant targets in disease-based proteomics analyses. To effectively analyze low-abundance proteins by electrospray ionization mass spectrometry, limits of detection must be improved upon. Previous studies have demonstrated hydrophobicity is a main determinant of the electrospray ionization response. One would expect to improve the electrospray ionization response of a hydrophilic peptide by making it more hydrophobic, thus increasing the molecule's affinity for the surface of the electrospray droplet, thereby allowing the molecule to more effectively compete for charge. In this report, we demonstrate a strategy to increase the electrospray ionization response of cysteine-containing peptides with the addition of an octylcarboxyamidomethyl modification via alkylation chemistry, which we name the ALiPHAT strategy (augmented limits of detection for peptides with hydrophobic alkyl tags). We demonstrate the relative increase in electrospray ionization response of peptides with an octylcarboxyamidomethyl modification compared to carboxyamidomethyl-modified peptides upon LC-MS analysis. Furthermore, we show the octylcarboxyamidomethyl group does not fragment or undergo neutral loss during collision-induced dissociation. Collectively, our results demonstrate the feasibility of the octylcarboxyamidomethyl modification to improve limits of detection for cysteine-containing peptides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac070558q | DOI Listing |
J Neurosci Methods
January 2025
Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Goettingen, Germany; Faculty of Biology and Psychology, University of Goettingen, 37077 Goettingen, Germany.
Background: Neuronal activity is modulated by behavior and cognitive processes. The combination of several neurotransmitter systems, acting directly or indirectly on specific populations of neurons, underlie such modulations. Most studies with non-human primates (NHPs) fail to capture this complexity, partly due to the lack of adequate methods for reliably and simultaneously measuring a broad spectrum of neurotransmitters while the animal engages in behavioral tasks.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul, 01811, Korea.
We report a bithiophene-based fluorescence probe BDT (2,2'-(((1 E, 1'E)-[2,2'-bithiophene]-5,5'-diylbis(methaneylylidene))bis(azaneylylidene))bis(4-(tert-butyl)phenol)) for recognizing ClO. BDT selectively responded to ClO, leading to a blue fluorescence enhancement in a mixture of DMF/HEPES buffer (9:1, v/v). Importantly, BDT showed an ultrafast response (within 1 s) to ClO among the fluorescent turn-on chemosensors based on bithiophene.
View Article and Find Full Text PDFAnal Chem
January 2025
The Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of cancer in Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, P. R. China.
An online reactive internal extraction electrospray ionization (iEESI) method was developed for the rapid determination of organic and inorganic speciation information for selenium in poultry tissue samples without complex sample pretreatment. The addition of citric acid as a reducing agent to the internal extraction solvent of methanol/acetic acid (99:1, V/V) for iEESI resulted in the reduction of selenate in the sample to selenite, accompanied by the production of malic acid as an oxidation product. The quantitative analysis of selenate was conducted by using malic acid.
View Article and Find Full Text PDFMolecules
January 2025
School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China.
This study systematically investigated the effect of organic solvent addition on the detection signal intensity of 15 organic pesticides in water using ultra-high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UHPLC-ESI-MS/MS). The analysis of chromatographic peak area ratios in ultrapure water (UPW) versus 30% methanol (MeOH)-UPW showed that the adsorption effects (AEs, mainly from injection vials with weaker polarity) were the main factor influencing the detection intensity of the organic pesticides. The AEs varied with pesticide type and concentration, especially for those with high logK values and longer retention times, such as malathion, triadimefon, prometryn, S-metolachlor, diazinon, and profenofos.
View Article and Find Full Text PDFMolecules
January 2025
Department of Environmental Chemistry and Bioanalytics, Gagarina 7, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Torun, Poland.
Bisphenols may negatively impact human health. In this study, we propose the use of HPLC-FLD for the simultaneous determination of bisphenols in pericardial fluid samples collected from patients with coronary artery disease undergoing coronary artery bypass surgery. For sample preparation, a fast, simple, and "green" DLLME method was used, achieving mean recovery values in the range of 62%-98% with relative standard deviations between 2% and 6% for all analytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!