Microbial diversity--biotechnological and industrial perspectives.

Indian J Exp Biol

Division of Fermentation Technology, Central Drug Research Institute, Lucknow 226 001, India.

Published: April 2007

Biodiversity is an addition sum of the studies on genetic, taxonomic commercial and ecosystem aspects of living systems. All the living individuals of a species contain a distinct combination of genes and the intrinsic interaction among the gene pool influences evolution, survival and phenotypic/genotypic changes of the part of the biodiversity i.e. community. The amount of genetic diversity within population varies tremendously and much of modern conservation biology is concerned with the maintenance of genetic diversity within the population of plants, animals and microbes. Germplasm, obtained with the vast biodiversity, provides a major source of biological material for the development of medicines, vaccines, pharmaceutical products, improved crop and animal varieties and for other environmental applications. Industrialized nations, who have the technology and resources to patent and develop commercial biological products, are having the benefits of biodiversity through the collected and conserved germplasm flowing through the international research centers. In fact a particular genetic contribution usually represents only a small percentage of the total value of the eventual products. In addition, the research and development process required to commercialize a particular product requires enormous technical efforts. The principle of patenting genes is the morally or ethically correct is a matter of intense debate. However, geneticists, having conceived of the technologies with vast and immediate therapeutic, food and environmental values must try to bring to the material to market as soon as possible.

Download full-text PDF

Source

Publication Analysis

Top Keywords

genetic diversity
8
diversity population
8
microbial diversity--biotechnological
4
diversity--biotechnological industrial
4
industrial perspectives
4
biodiversity
4
perspectives biodiversity
4
biodiversity addition
4
addition sum
4
sum studies
4

Similar Publications

Indian Himalayan Region (IHR) supports a plethora of biodiversity with a unique assemblage of many charismatic and endemic species. We assessed the genetic diversity, demographic history, and habitat suitability of blue sheep (Pseudois nayaur) in the IHR through the analysis of the mitochondrial DNA (mtDNA) control region (CR) and Cytochrome b gene, and 14 ecological predictor variables. We observed high genetic divergence and designated them into two genetic lineage groups, i.

View Article and Find Full Text PDF

A complete set of monosomic alien addition lines of Radish-Brassica oleracea exhibiting extensive variations was generated and well characterized for their chromosome behaviors and phenotypic characteristics. Monosomic alien addition lines (MAALs) are developed through interspecific hybridization, where an alien chromosome from a relative species is introduced into the genome of the recipient plant, serving as valuable genetic resources. In this study, an allotetraploid Raphanobrassica (RRCC, 2n = 36) was created from the interspecific hybridization between radish (Raphanus sativus, RR, 2n = 18) and Brassica oleracea (CC, 2n = 18).

View Article and Find Full Text PDF

Objective: This study was undertaken to describe incidence and distribution of seizures, etiologies, and epilepsy syndromes in the general child and youth population, using the current International League Against Epilepsy (ILAE) classifications.

Methods: The study platform is the Norwegian Mother, Father, and Child Cohort Study (MoBa). Epilepsy cases were identified through registry linkages facilitated by Norway's universal health care system and mandatory reporting to the Norwegian Patient Registry.

View Article and Find Full Text PDF

Extensive homologous recombination safeguards oocyte genome integrity in mammals.

Nucleic Acids Res

January 2025

MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, No.866 Yuhangtang Road, 310058, Hangzhou, China.

Meiosis in mammalian oocytes is interrupted by a prolonged arrest at the germinal vesicle stage, during which oocytes have to repair DNA lesions to ensure genome integrity or otherwise undergo apoptosis. The FIRRM/FLIP-FIGNL1 complex dissociates RAD51 from the joint DNA molecules in both homologous recombination (HR) and DNA replication. However, as a type of non-meiotic, non-replicative cells, whether this RAD51-dismantling mechanism regulates genome integrity in oocytes remains elusive.

View Article and Find Full Text PDF

Altered DNA dynamics at lesion sites are implicated in how DNA repair proteins sense damage within genomic DNA. Using laser temperature-jump (T-jump) spectroscopy combined with cytosine-analog Förster Resonance Energy Transfer (FRET) probes that sense local DNA conformations, we measured the intrinsic dynamics of DNA containing 3 base-pair mismatches recognized in vitro by Rad4 (yeast ortholog of XPC). Rad4/XPC recognizes diverse lesions from environmental mutagens and initiates nucleotide excision repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!