Epidermolysis bullosa acquisita is a subepidermal blistering disease associated with tissue-bound and circulating autoantibodies against type VII collagen, a major constituent of the dermal-epidermal junction. The passive transfer of Abs against type VII collagen into mice induces a subepidermal blistering disease dependent upon activation of terminal complement components. To further dissect the role of the different complement activation pathways in this model, we injected C1q-deficient, mannan-binding lectin-deficient, and factor B-deficient mice with rabbit Abs against murine type VII collagen. The development and evolution of blistering had a similar pattern in mannan-binding lectin-deficient and control mice and was initially only marginally less extensive in C1q-deficient mice compared with controls. Importantly, factor B-deficient mice developed a delayed and significantly less severe blistering disease compared with factor B-sufficient mice. A significantly lower neutrophilic infiltration was observed in factor B-deficient mice compared with controls and local reconstitution with granulocytes restored the blistering disease in factor B-deficient mice. Our study provides the first direct evidence for the involvement of the alternative pathway in an autoantibody-induced blistering disease and should facilitate the development of new therapeutic strategies for epidermolysis bullosa acquisita and related autoimmune diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.178.10.6514 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!