AI Article Synopsis

  • The study explored how adding carbon monoxide (CO) affects sensory discharge in the carotid body (CB) and the expression of a specific protein (HIF-1 alpha) in glomus cells.
  • Adding high levels of CO quickly increased electrical activity in the rat CB, but this effect could be reversed by exposure to light, with certain wavelengths being more effective than others.
  • Cultured glomus cells showed an increase in HIF-1 alpha when exposed to CO in the dark, but this increase was blocked by light, particularly at specific wavelengths, suggesting that both sensory discharge and HIF-1 alpha expression are linked through a common oxygen-sensing mechanism in mitochondria.

Article Abstract

Addition of Pco ( approximately 350 Torr) to a normoxic medium (Po(2) of approximately 130 Torr) was used to investigate the relationship between carotid body (CB) sensory discharge and expression of hypoxia-inducible factor 1 alpha (HIF-1 alpha) in glomus cells. Afferent electrical activity measured for in vitro-perfused rat CB increased rapidly (1-2 s) with addition of high CO (Pco of approximately 350 Torr; Po(2) of approximately 130 Torr), and this increase was fully reversed by white light. At submaximal light intensities, the extent of reversal was much greater for monochromatic light at 430 and 590 nm than for light at 450, 550, and 610 nm. This wavelength dependence is consistent with the action spectrum of the CO compound of mitochondrial cytochrome a(3). Interestingly, when isolated glomus cells cultured for 45 min in the presence of high CO (Pco of approximately 350 Torr; Po(2) of approximately 130 Torr) in the dark, the levels of HIF-1 alpha, which turn over slowly (many minutes), increased. This increase was not observed if the cells were illuminated with white light during the incubation. Monochromatic light at 430- and 590-nm light was much more effective than that at 450, 550, and 610 nm in blocking the CO-induced increase in HIF-1 alpha, as was the case for chemoreceptor discharge. Although the changes in HIF-1 alpha take minutes and those for CB neural activity occur in 1-2 s, the similar responses to CO and light suggest that the oxygen sensor is the same (mitochondrial cytochrome a(3)).

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpregu.00882.2006DOI Listing

Publication Analysis

Top Keywords

hif-1 alpha
20
pco 350
12
350 torr
12
po2 130
12
130 torr
12
carotid body
8
oxygen sensor
8
glomus cells
8
high pco
8
torr po2
8

Similar Publications

Differences in the composition of plasma metabolites and intestinal flora of piglets with different weaning weights revealed by untargeted metabolomics and 16S rRNA gene sequencing.

J Sci Food Agric

January 2025

Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China.

Background: Piglets with different weaning body weights exhibit varying growth performance. This study explores the relationship between their plasma metabolites and gut microbiota to reveal differences in metabolic regulation and microbial composition.

Results: Plasma and colon content samples from piglets of different weaning weights were collected.

View Article and Find Full Text PDF

Therapeutic potential of roxadustat in immune thrombocytopenia: A Mendelian randomization analysis.

J Thromb Haemost

January 2025

Hematology Department, Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China. Electronic address:

Background: Immune thrombocytopenia (ITP) is characterized by immune-mediated platelet destruction and impaired megakaryocyte maturation. Hypoxia-inducible factor-1 alpha (HIF-1α), pivotal in the development of megakaryocytes and immune regulation, is downregulated in ITP. Roxadustat, which stabilizes HIF-1α, has emerged as a potential therapeutic drug for ITP that acts by enhancing HIF-1α-mediated megakaryocyte development and modulating immune responses.

View Article and Find Full Text PDF

Integrated analyses of transcriptomes, metabolomes, and proteomes unveil the role of FoXO signaling axis in buck semen cryopreservation.

Theriogenology

December 2024

Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.

Sperm cryopreservation is a complex process involving gene expression, protein synthesis, membrane stability, and metabolic adaptation. However, molecular alterations in sperm cryopreservation and the mechanisms defending against freezing damage remain poorly understood. This study investigates these changes and defense mechanisms using transcriptomics, proteomics, and metabolomics data.

View Article and Find Full Text PDF

Ovarian cancer is a common malignant tumor in women, exhibiting a certain sensitivity to chemotherapy drugs like gemcitabine (GEM). This study, through the analysis of ovarian cancer single-cell RNA sequencing (scRNA-seq) data and transcriptome data post-GEM treatment, identifies the pivotal role of hypoxia-inducible factor 1 alpha (HIF-1α) in regulating the treatment process. The results reveal that HIF-1α modulates the expression of VEGF-B, thereby inhibiting the fibroblast growth factor 2 (FGF2)/FGFR1 signaling pathway and impacting tumor formation.

View Article and Find Full Text PDF

The extracellular matrix (ECM) is a complex structure involved in many biological processes with collagen being the most abundant protein. Density of collagen fibers in the matrix is a factor influencing cell motility and migration speed. In cancer, this affects the ability of cells to migrate and invade distant tissues which is relevant for designing new therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!