Polypyrrole nanotube array sensor for enhanced adsorption of glucose oxidase in glucose biosensors.

Biosens Bioelectron

Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu-Shi 808-0196, Japan.

Published: August 2007

A novel amperometric biosensor based on polypyrrole (PPy) nanotube array deposited on a Pt plated nano-porous alumina substrate and its performances are described. Glucose oxidase (GOx) enzyme was selected as the model enzyme in this study. Commercially available nano-porous alumina discs were used to fabricate electrodes in order to study the feasibility of enzyme entrapment by physical adsorption. A PPy/PF6- film comprising of nanotube array was synthesized using a solution containing 0.05 M Pyrrole and 0.1 M NaPF6 at a current density of 0.3 mA/cm2 for 90 s. The immobilization was done by physical adsorption of 5 microL of GOx (from a stock solution of 2 mg/mL of 210 U/mg) on each electrode. A sensitivity of 7.4 mA cm(-2) M(-1) was observed with PPy nanotube array where the maximum tube diameter was 100 nm. A linear range of 500 microM-13 mM and a response time of about 3 s were observed with a nanotube array where the maximum tube diameter was 200 nm. The synthesized nanotube arrays were characterized by galvanostatic electrochemical technique. Calculated value of apparent Michaelis-Menten constant (Km) was 7.01 mM. The use of nano-porous template electrodes leads to an efficient enzyme loading and provides an increased surface area for sensing the reaction. These factors contribute to increase the characteristic performances of the novel biosensor.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2007.03.022DOI Listing

Publication Analysis

Top Keywords

nanotube array
20
glucose oxidase
8
ppy nanotube
8
nano-porous alumina
8
physical adsorption
8
array maximum
8
maximum tube
8
tube diameter
8
array
5
nanotube
5

Similar Publications

In the realm of modern materials science, horizontally aligned carbon nanotube arrays stand as promising materials for the development of next-generation integrated circuits. However, their large-scale integration has been impeded by the constraints of current fabrication techniques, which struggle to achieve the necessary uniformity, density, and size control of carbon nanotube arrays. Overcoming this challenge necessitates a significant shift in fabrication approaches.

View Article and Find Full Text PDF

Photoelectron Therapy Preventing the Formation of Bacterial Biofilm on Titanium Implants.

Small

December 2024

School of Chemical Engineering, Sichuan University, No 24th, South Section 1, Yihuan Road, Chengdu, Sichuan, 610065, China.

The exogenous bacterial infection and formation of biofilm on the surface of titanium implants can affect the adhesion, proliferation, and differentiation of cells associated with osteogenesis, ultimately leading to surgical failure. This study focuses on two critical stages for biofilm formation: i) bacterial adhesion and aggregation, ii) growth and proliferation. The titanium with well-organized titania nanotube arrays is first modified by nitrogen dopants, then loaded with CuFeSe nanoparticles to form a p-n heterojunction.

View Article and Find Full Text PDF

Arraying and Guest Inclusion of Soluble Metal-Organic Nanotubes Composed of Macrocyclic Paddle-Wheel Metal Complexes.

Angew Chem Int Ed Engl

December 2024

Nagoya University: Nagoya Daigaku, Department of Chemistry, Graduate School of Science, Furo-cho, Chikusa-ku, 464-8602, Nagoya, JAPAN.

A new series of metal-organic nanotubes was constructed through one-dimensional assembly using molecular triangles or molecular squares composed of paddlewheel dirhodium complexes and bidentate axial ligands. The metal-organic nanotubes were significantly different from conventional solid metal-organic framework (MOF) motifs. They exhibit good solubility owing to the branched side chains at their periphery and demonstrate high orientation capabilities in thin films owing to their anisotropic structure.

View Article and Find Full Text PDF

Advanced chitin-based composite hydrogels enabled by quercetin-mediated assembly for multifunctional applications.

Int J Biol Macromol

December 2024

Jiangxi Provincial Engineering Research Center of Bamboo Advanced Materials and Conversion, Gannan Normal University, Ganzhou 341000, China. Electronic address:

Natural building blocks like chitins for self-assembling into complex materials have garnered significant interest owing to the inherent and diverse functionalities. However, challenges persist in the assembly of chitin-based composites, primarily stemming from chitin's poor solubility and compatibility. Herein, a quercetin-mediated multiple crosslinking strategy was developed to enhance compatibility by quercetin-mediated interfacial interactions between chitin and inorganic materials, achieving a series of chitin-based composite hydrogels with high performances.

View Article and Find Full Text PDF

The high overpotential of the oxygen evolution reaction (OER) and the strong corrosion of the anode are the main problems currently faced by the zinc hydrometallurgical process. This study achieved the successful synthesis of titanium dioxide nanotubes doped by Al and V on a TC4 alloy. Subsequently, a composite electrode, TC4/AVTN-7/PbO-ZrO-CoO, was prepared utilizing composite electrodeposition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!