A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Gonadal transcriptome responses and physiological consequences of exposure to oestrogen in breeding zebrafish (Danio rerio). | LitMetric

Environmental oestrogens are widespread in the aquatic environment and cause alterations in sexual development and function in vertebrates. The molecular pathways underpinning these effects, however, remain poorly understood. In this study, we aimed at generating a mechanistic understanding of the disruptive effects of exposure to environmentally relevant concentrations of 17 alpha-ethinyloestradiol (EE(2)) on reproduction in zebrafish, by anchoring the transcriptomic alterations induced with the physiological consequences of exposure. Breeding colonies of zebrafish were exposed for a 21-day period to three concentrations of EE(2) (0.05, 0.5 and 5 ng/L) and the gonadal transcriptomic alterations induced (determined using a 17,000 oligonucleotide microarray) were analysed together with physiological effects seen on reproductive output of both males and females. Exposure to 5 ng EE(2)/L resulted in reproductive impairment characterised by a decrease in egg production, alterations in sperm quality and reduced fertilisation success. The effects seen were associated with altered expression of 114 and 131 genes in the gonads of males and females, respectively. The biological processes most affected by the exposure were protein metabolism in males and mitochondria organisation and biogenesis in females. Genes involved in the regulation of cell cycle progression, the ubiquitin system and glutathione peroxidase were affected by the EE(2) exposure and associated with the changes observed in gamete quality in both genders. In summary, we demonstrated that EE(2) exposure compromised the reproductive health of breeding zebrafish at environmentally relevant concentrations. The molecular mechanisms mediating some of these effects were identified and included those impacting processes central to gametogenesis in both males and females.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2007.03.019DOI Listing

Publication Analysis

Top Keywords

males females
12
physiological consequences
8
consequences exposure
8
breeding zebrafish
8
environmentally relevant
8
relevant concentrations
8
transcriptomic alterations
8
alterations induced
8
ee2 exposure
8
exposure
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!