We investigated the importance and efficiency of active and passive exploration on the recognition of objects in a variety of virtual environments (VEs). In this study, 54 participants were randomly allocated into one of active and passive navigation conditions. Active navigation was performed by allowing participants to self-pace and control their own navigation, but passive navigation was conducted by forced navigation. After navigating VEs, participants were asked to recognize the objects that had been in the VEs. Active navigation condition had a significantly higher percentage of hit responses (t (52) = 4.000, p < 0.01), and a significantly lower percentage of miss responses (t (52) = -3.763, p < 0.01) in object recognition than the passive condition. These results suggest that active navigation plays an important role in spatial cognition as well as providing an explanation for the efficiency of learning in a 3D-based program.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/cpb.2006.9952 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!