Low-dose-rate radiation modulates various biological responses including carcinogenesis, immunological responses and diabetes. We found that continuous irradiation with low-dose-rate gamma rays ameliorated type II diabetes in db/db mice, diabetic mice that lack leptin receptors. Whole-body exposure of db/db mice to low dose-rate gamma radiation improved glucose clearance without affecting the response to insulin. Histological studies suggested that degeneration of pancreatic islets was significantly suppressed by the radiation. Insulin secretion in response to glucose loading was increased significantly in the irradiated mice. These results suggest that low-dose-rate gamma radiation ameliorates type II diabetes by maintaining insulin secretion, which gradually decreases during the progression of diabetes due to degeneration of pancreatic islets. We also inferred that protection from oxidative damage is involved in the anti-diabetic effect of low-dose-rate gamma rays because expression and activity of pancreatic superoxide dismutase were significantly elevated by low-dose-rate gamma radiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1667/RR0786.1 | DOI Listing |
Radiat Prot Dosimetry
November 2024
Department of Radiobiology, Institute for Environmental Sciences, 1-7 Ienomae Obuchi, Rokkasho, Kamikita, Aomori 039-3212, Japan.
The present work investigates the long-term effects of continuous low dose-rate (20 mGy/day to total doses of 1-8 Gy) gamma-ray exposure on the hematopoietic cells of specific pathogen-free C3H/HeN mice. Peripheral white blood cell (WBC) counts decreased on days 206, 471, and 486, with no significant changes in red blood cell (RBC) and platelet (PLT) counts. The number of colony forming units (CFU-S and CFU-GM) in the bone marrow and spleen from irradiated mice decreased with increasing total dose on day-12 and day-7.
View Article and Find Full Text PDFRadiat Prot Dosimetry
November 2024
Department of Radiobiology, Institute for Environmental Sciences, 2-121 Hacchazawa, Rokkasho, Aomori 039-3213, Japan.
The purpose of the study was to determine whether environmental enrichments (EE) can mitigate the adverse effects of chronic low-dose-rate radiation exposure in mice. Female B6C3F1 mice were continuously exposed to 20 mGy d-1 gamma-rays under specific-pathogen-free conditions since 8 weeks of age for 400 d. After completion of the radiation exposure, OV3121 cells, derived from an ovarian granulosa cell tumor, were inoculated subcutaneously alongside age-matched non-irradiated control mice.
View Article and Find Full Text PDFRadiat Prot Dosimetry
November 2024
Institute for Environmental Science, 1-7 Ienomae, Obuchi, Rokkasho, Kamikita, Aomori 039-3212, Japan.
To assess the biological effects of low-dose and low-dose-rate radiation, we established a sensitive assay system for detecting somatic mutations in hypoxanthine-phosphoribosyltransferase 1 (HPRT1) gene. In this study, we investigated the dose-rate effects of mutagenesis by gamma irradiation at dose-rates of 6.6, 20 and 200 mGy d-1.
View Article and Find Full Text PDFFront Public Health
November 2024
Istituto Superiore di Sanità (ISS), Rome, Italy.
Introduction: Radiobiological studies at low dose rates allow us to improve our knowledge of the mechanisms by which radiation exerts its effects on biological systems following chronic exposures. Moreover, these studies can complement available epidemiological data on the biological effects of low doses and dose rates of ionizing radiation. Very few studies have simultaneously compared the biological effects of low- and high-LET radiations at the same dose rate for chronic irradiation.
View Article and Find Full Text PDFRadiat Res
December 2024
Department of Radiobiology, Institute for Environmental Sciences. 1-7, Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan.
The present work investigates the multigenerational effects of paternal pre-conceptional exposure to continuous low-dose-rate gamma rays in C56BL/6J mice. Male C57BL/6J (F0 sires) mice were exposed to low dose rates of 20, 1, and 0.05 mGy/day for 400 days, to total accumulated doses of 8,000, 400, and 20 mGy, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!