Rigid medium stabilization of metal-to-ligand charge transfer excited states.

J Phys Chem B

Department of Chemistry, The University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA.

Published: June 2007

AI Article Synopsis

  • A range of metal salts has been studied after being incorporated into poly(methyl methacrylate) (PMMA) films to analyze their photophysical properties through steady-state and time-resolved methods.
  • The presence of PMMA enhances excited-state lifetimes and emission energies due to its rigid environment compared to a fluid solution, and the energy gap influences nonradiative decay.
  • Some compounds that are nonemissive in solution show stable emission in PMMA, with temperature affecting lifetimes and nonexponential behavior in excited-state decay, linked to interactions between metal-to-ligand charge transfer (MLCT) and d-d states.

Article Abstract

The salts [Ru(bpy)3](PF6)2, cis-[Ru(bpy)2(py)2](PF6)2, trans-[Ru(bpy)2(4-Etpy)2](PF6)2, [Ru(tpy)2](PF6)2, and [Re(bpy)(CO)3(4-Etpy)](PF6) (bpy=2,2'-bipyridine, py=pyridine, 4-Etpy=4-ethylpyridine, and tpy=2,2':6',2-terpyridine) have been incorporated into poly(methyl methacrylate) (PMMA) films and their photophysical properties examined by both steady-state and time-resolved absorption and emission measurements. Excited-state lifetimes for the metal salts incorporated in PMMA are longer and emission energies enhanced due to a rigid medium effect when compared to fluid CH3CN solution. In PMMA part of the fluid medium reorganization energy, lambdaoo, contributes to the energy gap with lambdaoo approximately 700 cm-1 for [Ru(bpy)3](PF6)2 from emission measurements. Enhanced lifetimes can be explained by the energy gap law and the influence of the excited-to-ground state energy gap, Eo, on nonradiative decay. From the results of emission spectral fitting on [Ru(bpy)3](PF6)2* in PMMA, Eo is temperature dependent above 200 K with partial differentialEo/ partial differentialT=2.8 cm-1/deg. cis-[Ru(bpy)2(py)2](PF6)2 and trans-[Ru(bpy)2(4-Etpy)2](PF6)2 are nonemissive in CH3CN and undergo photochemical ligand loss. Both emit in PMMA and are stable toward ligand loss even for extended photolysis periods. The lifetime of cis-[Ru(bpy)2(py)2](PF6)2* in PMMA is temperature dependent, consistent with a contribution to excited-state decay from thermal population and decay through a low-lying dd state or states. At temperatures above 190 K, coinciding with the onset of the temperature dependence of Eo for [Ru(bpy)3](PF6)2*, lifetimes become significantly nonexponential. The nonexponential behavior is attributed to dynamic coupling between MLCT and dd states, with the lifetime of the latter greatly enhanced in PMMA with tau approximately 3 ns. On the basis of these data and data in 4:1 (v/v) EtOH/MeOH, the energy gap between the MLCT and dd states is decreased by approximately 700 cm-1 in PMMA with the dd state at higher energy by DeltaH0 approximately 1000 cm-1. The "rigid medium stabilization effect" for cis-[Ru(bpy)2(py)2](PF6)2* in PMMA is attributed to inhibition of metal-ligand bond breaking and a photochemical cage effect.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp068682lDOI Listing

Publication Analysis

Top Keywords

energy gap
16
pmma
9
rigid medium
8
medium stabilization
8
cis-[rubpy2py2]pf62 trans-[rubpy24-etpy2]pf62
8
emission measurements
8
700 cm-1
8
pmma temperature
8
temperature dependent
8
ligand loss
8

Similar Publications

Studying power-grid synchronization with incremental refinement of model heterogeneity.

Chaos

January 2025

Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, P.O. Box 49, H-1525 Budapest, Hungary.

The dynamics of electric power systems are widely studied through the phase synchronization of oscillators, typically with the use of the Kuramoto equation. While there are numerous well-known order parameters to characterize these dynamics, shortcoming of these metrics are also recognized. To capture all transitions from phase disordered states over phase locking to fully synchronized systems, new metrics were proposed and demonstrated on homogeneous models.

View Article and Find Full Text PDF

Pulsed-Current Operation Enhances HO Production on a Boron-Doped Diamond Mesh Anode in a Zero-Gap PEM Electrolyzer.

ChemSusChem

January 2025

Department of Chemical Engineering, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The, Netherlands.

A niobium (Nb) mesh electrode was coated with boron-doped diamond (BDD) using chemical vapor deposition in a custom-built hot-filament reactor. The BDD-functionalized mesh was tested in a zero-gap electrolysis configuration and evaluated for the anodic formation of HO by selective oxidation of water, including the analysis of the effects on Faradaic efficiency towards HO (FEH2O2) induced by pulsed electrolysis. A low electrolyte flow rate (V⋅) was found to result in a relatively high concentration of HO in single-pass electrolysis experiments.

View Article and Find Full Text PDF

First-principles study of CO and HO adsorption on the anatase TiO(101) surface: effect of Au doping.

Phys Chem Chem Phys

January 2025

Shanxi Coal International Energy Group Co., Ltd., Taiyuan 030000, China.

Photocatalytic reduction of CO will play a major role in future energy and environmental crisis. To investigate the adsorption mechanisms of CO and HO molecules involved in the catalytic process on the surface of anatase titanium dioxide 101 (TiO(101)) and the influence of Au atom doping on their adsorption, first-principles density functional theory calculations were used. The results show that 1.

View Article and Find Full Text PDF

IMPACT: In-Memory ComPuting Architecture based on Y-FlAsh Technology for Coalesced Tsetlin machine inference.

Philos Trans A Math Phys Eng Sci

January 2025

Microsystems Group, School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.

The increasing demand for processing large volumes of data for machine learning (ML) models has pushed data bandwidth requirements beyond the capability of traditional von Neumann architecture. In-memory computing (IMC) has recently emerged as a promising solution to address this gap by enabling distributed data storage and processing at the micro-architectural level, significantly reducing both latency and energy. In this article, we present In-Memory comPuting architecture based on Y-FlAsh technology for Coalesced Tsetlin machine inference (IMPACT), underpinned on a cutting-edge memory device, Y-Flash, fabricated on a 180 nm complementary metal oxide semiconductor (CMOS) process.

View Article and Find Full Text PDF

Pressure treatment enables white-light emission in Zn-IPA MOF via asymmetrical metal-ligand chelate coordination.

Nat Commun

January 2025

State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, Changchun, China.

Metal-organic frameworks that feature hybrid fluorescence and phosphorescence offer unique advantages in white-emitting communities based on their multiple emission centers and high exciton utilization. However, it poses a substantial challenge to realize superior white-light emission in single-component metal-organic frameworks without encapsulating varying chromophores or integrating multiple phosphor subunits. Here, we achieve a high-performance white-light emission with photoluminescence quantum yield of 81.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!