The new crystalline compounds Tl2Ni(CN)4 and Tl2Pd(CN)4 were synthesized by several procedures. The structures of the compounds were determined by single-crystal X-ray diffraction. The compounds are isostructural with the previously reported platinum analogue, Tl2Pt(CN)4. A new synthetic route to the latter compound is also suggested. In contrast to the usual infinite columnar stacking of [M(CN)4]2- ions with short intrachain M-M separations, characteristic of salts of tetracyanometalates of NiII, PdII, and PtII, the structure of the thallium compounds is noncolumnar with the two TlI ions occupying axial vertices of a distorted pseudo-octahedron of the transition metal, [MTl2C4]. The Tl-M distances in the compounds are 3.0560(6), 3.1733(7), and 3.140(1) A for NiII, PdII, and PtII, respectively. The short Tl-Ni distance in Tl2Ni(CN)4 is the first example of metal-metal bonding between these two metals. The strength of the metal-metal bonds in this series of compounds was assessed by means of vibrational spectroscopy. Rigorous calculations, performed on the molecules in D4h point group symmetry, provide force constants for the Tl-M stretching vibration constants of 146.2, 139.6, and 156.2 N/m for the NiII, PdII, and PtII compounds, respectively, showing the strongest metal-metal bonding in the case of the Tl-Pt compound. Amsterdam density-functional calculations for isolated Tl2M(CN)4 molecules give Tl-M geometry-optimized distances of 2.67, 2.80, and 2.84 A for M = NiII, PdII, and PtII, respectively. These distances are all substantially shorter than the experimental values, most likely because of intermolecular Tl-N interactions in the solid compounds. Time-dependent density-functional theory calculations reveal a low-energy, allowed transition in all three compounds that involves excitation from an a1g orbital of mixed Tl 6pz-M ndz2 character to an a2u orbital of dominant Tl 6pz character.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic062092kDOI Listing

Publication Analysis

Top Keywords

niii pdii
16
pdii ptii
16
metal-metal bonding
12
compounds
10
compounds tl2nicn4
8
tl2nicn4 tl2pdcn4
8
pdii
5
niii
5
metal-metal
4
bonding tetracyanometalates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!