The cytoplasm of a mature oocyte contains many protein complexes that are programmed to restructure incoming sperm chromatins on fertilization. Of the complicated biochemical events that these functional machineries control, the most impressive and important is epigenetic reprogramming. Despite its importance in epigenetic resetting, or "de-differentiation," of gamete genomes back to an incipient status, the mechanisms of epigenetic reprogramming do not seem to be conserved among mammals. Here, we report that, unlike in the mouse, the pig sperm-derived pronucleus is markedly trimethylated at lysine 9 of histone H3 (H3-m(3)K9), which might be associated with preservation of paternally derived cytosine methylation in pig zygotes. The male H3-m(3)K9 pattern is gradually established during pronucleus development, and this process occurs independently of DNA replication. Considering these unique epigenetic features, the pig zygote is, we believe, suited to serve as another model of epigenetic reprogramming that is antithetical to the well-characterized mouse model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/dvdy.21150 | DOI Listing |
Nat Commun
January 2025
Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
How macrophages in the tissue environment integrate multiple stimuli depends on the genetic background of the host, but this is still poorly understood. We investigate IL-4 activation of male C57BL/6 and BALB/c strain specific in vivo tissue-resident macrophages (TRMs) from the peritoneal cavity. C57BL/6 TRMs are more transcriptionally responsive to IL-4 stimulation, with induced genes associated with more super enhancers, induced enhancers, and topologically associating domains (TAD) boundaries.
View Article and Find Full Text PDFComp Biochem Physiol A Mol Integr Physiol
January 2025
Biosciences, College of Life & Environmental Sciences, University of Exeter, UK; Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter, UK.
Fish are ectothermic animals with temperature playing a key role in their health, growth and survival. Greater occurrence of heat waves and temperature extremes, as a result of global climate change, has the potential to impact both wild and farmed populations. Within aquaculture, production is threatened by a multitude of stressors, including adverse temperatures.
View Article and Find Full Text PDFLife (Basel)
January 2025
Laboratory of Animal Histology, Faculty of Biology, "Alexandru Ioan Cuza" University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania.
Post-translational modifications (PTMs) of proteins dynamically build the buffering and adapting interface between oncogenic mutations and environmental stressors, on the one hand, and cancer cell structure, functioning, and behavior. Aberrant PTMs can be considered as enabling characteristics of cancer as long as they orchestrate all malignant modifications and variability in the proteome of cancer cells, cancer-associated cells, and tumor microenvironment (TME). On the other hand, PTMs of proteins can enhance anticancer mechanisms in the tumoral ecosystem or sustain the beneficial effects of oncologic therapies through degradation or inactivation of carcinogenic proteins or/and activation of tumor-suppressor proteins.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, E-29071 Málaga, Spain.
The importance of redox systems as fundamental elements in biology is now widely recognized across diverse fields, from ecology to cellular biology. Their connection to metabolism is particularly significant, as it plays a critical role in energy regulation and distribution within organisms. Over recent decades, metabolism has emerged as a relevant focus in studies of biological regulation, especially following its recognition as a hallmark of cancer.
View Article and Find Full Text PDFBiomolecules
December 2024
Experimental Research Center for Normal and Pathological Aging, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania.
The biological process of aging is influenced by a complex interplay of genetic, environmental, and epigenetic factors. Recent advancements in the fields of epigenetics and senolytics offer promising avenues for understanding and addressing age-related diseases. Epigenetics refers to heritable changes in gene expression without altering the DNA sequence, with mechanisms like DNA methylation, histone modification, and non-coding RNA regulation playing critical roles in aging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!