The P2X(7) receptor is an ATP-gated ionotropic receptor that is permeable for small cations including Ca(2+) ions. Using 293 cells expressing P2X(7) receptors, we show that the P2X(7) receptor-specific ligand 2',3'-O-(4-benzoyl-benzoyl)-ATP (BzATP) induces a signaling cascade leading to the biosynthesis of biologically active Egr-1, a zinc finger transcription factor. BzATP-triggered Egr-1 biosynthesis was attenuated by the mitogen-activated protein kinase kinase inhibitor PD98059, by BAPTA-AM, the acetoxymethylester of the cytosolic Ca(2+) chelator BAPTA, and by an epidermal growth factor (EGF) receptor-specific tyrosine kinase inhibitor (AG1478). These results indicate that phosphorylation and activation of extracellular signal-regulated protein kinase ERK, elevated levels of intracellular Ca(2+) and the transactivation of the EGF receptor are essential for BzATP-induced upregulation of Egr-1. The requirement of Ca(2+) within the signaling cascade was upstream of Raf kinase activation. Lentiviral-mediated expression of MAP kinase phosphatase-1 (MKP-1), a dual-specific phosphatase that dephosphorylates and inactivates ERK in the nucleus, inhibited Egr-1 biosynthesis following BzATP stimulation, indicating that MKP-1 functions as a nuclear shut-off device. Furthermore, the ternary complex factor Elk-1 was phosphorylated and the transcriptional activation potential of Elk-1 was enhanced following P2X(7) receptor stimulation. Expression of a dominant-negative mutant of Elk-1 impaired BzATP-induced upregulation of Egr-1 biosynthesis. Thus, Elk-1 connects the intracellular signaling cascade elicited by activation of P2X(7) receptors with the transcription of the Egr-1 gene.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.21085DOI Listing

Publication Analysis

Top Keywords

egr-1 biosynthesis
16
p2x7 receptor
12
signaling cascade
12
receptor stimulation
8
cytosolic ca2+
8
transactivation egf
8
egf receptor
8
p2x7 receptors
8
protein kinase
8
kinase inhibitor
8

Similar Publications

Ribosomal proteins mediate non-canonical regulation of gut inflammatory signature by crop contaminant deoxynivalenol.

Ecotoxicol Environ Saf

January 2025

Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Republic of Korea; Biomedical Research Institute, Pusan National University, Busan, Republic of Korea; Graduate Program of Genomic Data Sciences, Pusan National University, Yangsan,  Republic of Korea; Program of Total Foodtech and PNU-Korea Maritime Institute (KMI) Collaborative Research Center, Busan, Republic of Korea. Electronic address:

Deoxynivalenol (DON), a prevalent mycotoxin produced by Fusarium species, contaminates global agricultural products and poses significant health risks, particularly to the gastrointestinal (GI) system. DON exposure disrupts ribosomal function, inducing stress responses linked to various inflammatory diseases, including inflammatory bowel disease (IBD). In this study, we elucidate a novel regulatory mechanism involving ribosomal proteins (RPs) RPL13A and RPS3, which mediate proinflammatory chemokine production in DON-exposed gut epithelial cells.

View Article and Find Full Text PDF

Purpose: Changes in choroidal thickness (ChT) are proposed to predict myopia development but evidence is mixed. We investigated time courses of choroidal responses, following different types of dynamic artificial stimulation in chicks with and without spectacle lenses, as well as changes in retinal dopamine metabolism and expression of candidate genes.

Methods: Chicks were kept in an arena surrounded by computer monitors presenting dynamic checkerboard fields of small, medium and large size.

View Article and Find Full Text PDF

This study investigates the neuroprotective potential of STAT3 inhibition in reducing oxidative stress-induced neuronal damage and apoptosis, a major factor contributing to the onset and progression of neurodegenerative diseases, including Alzheimer's disease (AD). Our findings demonstrate that STAT3 inhibitors significantly enhance cell survival and reduce apoptosis in SH-SY5Y cells exposed to hydrogen peroxide. These protective effects are mediated through the ERK/CREB signaling pathway rather than direct suppression of STAT3 phosphorylation.

View Article and Find Full Text PDF

Pyrazolo-1-carbothioamides as EGR-1-DNA binding disruptors.

Bioorg Med Chem Lett

March 2025

Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 05029, Republic of Korea; Cancer and Metabolism Institute, Konkuk University, Seoul 05029, Republic of Korea. Electronic address:

Early growth response 1 (EGR-1) is a key transcription factor that boosts the inflammatory response. Therefore, targeting EGR-1 with small-molecule drugs may be a novel strategy for treating inflammatory diseases, such as atopic dermatitis. (E)-2-(2,4-dimethoxy-6-(4-methoxystyryl)phenyl)-3-hydroxy-6-nitro-4H-chromen-4-one (AB1711) was previously found to be an active compound that disrupts EGR-1-DNA binding.

View Article and Find Full Text PDF

Berberine Mediates Exosomes Regulating the Lipid Metabolism Pathways to Promote Apoptosis of RA-FLS Cells.

Pharmaceuticals (Basel)

November 2024

International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan Medical University, Haikou 570100, China.

: Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by joint damage and commonly linked to symptoms such as inflammation, swelling, and pain. Traditional Chinese Medicine offers complementary and integrative approaches in the management of rheumatoid arthritis, potentially providing additional options that may help address treatment challenges and enhance overall patient care. This paper explores the mechanism of action of berberine from the perspective of cellular exosomes by mediating exosomal contents and thus treating RA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!