Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Secondary metabolites or natural products have been isolated from many marine organisms. These metabolites often have important bioactive functions; however, very little information is available regarding the biosynthesis and regulation of many secondary metabolites. At a time when use of marine-derived metabolites is rapidly expanding in industry and pharmacological fields, a better understanding of the genetic mechanisms controlling secondary metabolite production is necessary. We review the recent development of a novel transcriptome profiling methodology that allows for rapid and high-throughput screening of changes in mRNA sequence pools. The application of genomics-based techniques and the integration of both biochemical and molecular data sets in marine organisms complement ongoing drug discovery efforts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10126-007-9008-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!