Objective: Stabilization of the cervicothoracic junction is challenging but commonly required in patients with traumatic, neoplastic, congenital, and postlaminectomy conditions. Although extensive research has been performed on stabilization of the cervical spine, there remains a paucity of published data on instrumentation at the cervicothoracic junction. Using 2-column, 3-column, and corpectomy instability models, a biomechanical analysis was performed on the effects of increasing the number of posterior segmental fixation points and/or anterior column reconstruction at the cervicothoracic junction.

Methods: Multidirectional flexibility testing was performed utilizing a 6-degree-of-freedom spine simulator and 7 fresh-frozen human cadaveric spines (occiput-T6). After intact spine analysis, each specimen was destabilized and reconstructed as follows: (1) C7/T1 2-column injury with posterior instrumentation; (2) C7/T1 3-column injury with posterior instrumentation; (3) C7/T1 3-column injury with anterior interbody cage/plate and posterior instrumentation; and (4) C7/T1 3-column injury plus C7 corpectomy with anterior cage/plate and posterior instrumentation. All reconstruction groups were tested with posterior instrumentation (screws connected by dual-diameter rods) from C5-T1, C5-T2, and C5-T3.

Results: For 2-column injuries, there were no statistically significant differences in flexibility (P>0.05), although there was a trend toward reduced flexibility with increasing levels of thoracic fixation. For 3-column injuries, posterior fixation alone resulted in excessive flexibility in flexion/extension even with instrumentation to T3 (P<0.05). With the addition of anterior column instrumentation, there were no observed differences in flexion/extension and lateral bending. For axial rotation, instrumentation to T1 alone demonstrated increased motion relative to the intact spine (P<0.05). The 3-column injury with corpectomy model demonstrated similar flexibility properties to the 3-column injury model.

Conclusions: With 3-column instability posterior segmental fixation alone from C5-T3 was inadequate, and the addition of anterior instrumentation restored flexibility to the intact condition. There was a strong trend toward reduced flexibility with increasing levels of thoracic fixation in all instability models.

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.bsd.0000211279.60777.dbDOI Listing

Publication Analysis

Top Keywords

posterior instrumentation
20
cervicothoracic junction
12
instrumentation c7/t1
12
c7/t1 3-column
12
3-column injury
12
biomechanical analysis
8
instrumentation
8
instrumentation cervicothoracic
8
human cadaveric
8
injury posterior
8

Similar Publications

This article aims to introduce a novel full-endoscopic anterior cervical discectomy and fusion (ACDF) procedure to treat cervical myelopathy. Adoption of endoscopic anterior cervical procedures has been lagging due to safety concerns and the necessity of placing an interbody cage. We have developed novel instrumentation and a modified percutaneous anterior cervical approach that allows a safe and reproducible full-endoscopic ACDF.

View Article and Find Full Text PDF

Background: There is growing interest in use of transcutaneous spinal stimulation (TSS) for people with neurologic conditions both to augment volitional control (by facilitating motoneuron excitability), and to decrease spasticity (by activating inhibitory networks). Various electrode montages are used during TSS, with little understanding of how electrode position influences spinal circuit activation. We sought to identify the thoracolumbar electrode montage associated with the most robust activation of spinal circuits by comparing posterior root-muscle reflexes (PRM reflexes) elicited by 6 montages.

View Article and Find Full Text PDF

Hypermagnesemia- and Hyperphosphatemia-Associated Cardiac Arrest after Injection of a Novel Magnesium-Based Bone Cement in Spinal Surgery.

J Am Acad Orthop Surg Glob Res Rev

January 2025

From the Department of Orthopaedic Surgery, Singapore General Hospital, Singapore (Dr. Loh, Dr. Ling, Dr. Jiang, and Lim) and the Department of Surgical Intensive Care, Division of Anaesthesiology and Perioperative Medicine, Singapore General Hospital, Singapore (Dr. Goh).

We report a case of pulseless electrical activity (PEA) associated with profound hypermagnesemia immediately after cementation of a novel magnesium-based cement in spine surgery. During T8 to T12 posterior instrumentation and decompression laminectomy for vertebral metastasis secondary to lung cancer, a 61-year-old Chinese woman developed sudden hypotension and went into PEA immediately after injection of a novel magnesium-based cement. Intraoperative fluoroscopic imaging did not show any notable cement extravasation.

View Article and Find Full Text PDF

Adult spinal deformity comprises a heterogeneous group of disorders that primarily affects older patients and can have a significant negative affect on health-related quality of life. Operative treatment for adult spinal deformity typically entails posterior instrumented fusions that have demonstrated the potential to significantly improve health-related quality of life outcomes. However, until fusion is achieved, the instrumentation providing structural support is subject to repetitive cyclical loading that disproportionately fatigues high-stress areas and can result in instrumentation failure.

View Article and Find Full Text PDF

Background: Previous research on spinal alignment and postoperative outcomes after cervical and upper thoracic fixation has suggested that clinical and patient-reported outcomes are improved when certain anatomical parameters are maintained. These parameters include the cervical sagittal vertical axis (cSVA), C2 and T1 slopes, and cervical lordosis (CL). For patients with primary and metastatic tumors involving the subaxial cervical and/or upper thoracic spine, there is minimal guidance on how to apply these parameters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!