In this paper, we directly demonstrate, for the first time, the activation of Ca(2+)-dependent protein kinase C (PKC) in the spinal cord of diabetic mice. In streptozotocin (STZ)-treated (200 mg/kg, i.v.) diabetic mice, hypersensitivity (allodynia) to mechanical stimulation appeared 7 d after STZ injection. This mechanical allodynia was inhibited by intrathecal injection of the PKC inhibitors 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) and calphostin C, but not the protein kinase A inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89). The activity of membrane-associated Ca(2+)-dependent PKC in the spinal cords of STZ-induced diabetic mice was significantly higher than that observed in non-diabetic mice. These results suggest that activation of Ca(2+)-dependent PKC in the spinal cord, contributes to the mechanical allodynia in the pain associated with diabetic neuropathy.

Download full-text PDF

Source
http://dx.doi.org/10.1248/bpb.30.990DOI Listing

Publication Analysis

Top Keywords

diabetic mice
16
protein kinase
12
spinal cord
12
mechanical allodynia
12
pkc spinal
12
activation ca2+-dependent
8
ca2+-dependent pkc
8
diabetic
5
mice
5
contribution ca2+
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!