In this paper, we directly demonstrate, for the first time, the activation of Ca(2+)-dependent protein kinase C (PKC) in the spinal cord of diabetic mice. In streptozotocin (STZ)-treated (200 mg/kg, i.v.) diabetic mice, hypersensitivity (allodynia) to mechanical stimulation appeared 7 d after STZ injection. This mechanical allodynia was inhibited by intrathecal injection of the PKC inhibitors 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) and calphostin C, but not the protein kinase A inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89). The activity of membrane-associated Ca(2+)-dependent PKC in the spinal cords of STZ-induced diabetic mice was significantly higher than that observed in non-diabetic mice. These results suggest that activation of Ca(2+)-dependent PKC in the spinal cord, contributes to the mechanical allodynia in the pain associated with diabetic neuropathy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1248/bpb.30.990 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!