In this paper we present the recent developments made for the scanning system for proton beams at TSL in Uppsala, showing that this system is now fully functional being able to produce conformal intensity modulated scan patterns with sufficient accuracy. A new control and supervising system handling the beam delivery including the control of the synchrocyclotron and the scanning system is developed and described in detail. A complete dosimetry system with transmission ionization chambers and a multi-wire ionization chamber for monitoring of the beam during scanning has been constructed. The details of the dose monitors and the position sensitive multi-wire ionization chamber are presented in this work. Furthermore, we have established procedures for verification measurements to ensure the quality of the beam and also methods for calibration of the beam monitors and relative and absolute dosimetry for complex scanned beams.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0031-9155/52/10/008 | DOI Listing |
Clin Transl Radiat Oncol
March 2025
Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA.
Aim: This study leveraged standard-of-care CT scans of patients receiving unilateral radiotherapy (RT) for early tonsillar cancer to detect volumetric changes in the carotid arteries, and determine whether there is a dose-response relationship.
Methods: Disease-free cancer survivors (>3 months since therapy and age > 18 years) treated with intensity modulated RT for early (T1-2, N0-2b) tonsillar cancer with pre- and post-therapy contrast-enhanced CT scans available were included. Patients treated with definitive surgery, bilateral RT, or additional RT before the post-RT CT scan were excluded.
Abnormal eye movements occur early in the course of disease in many ataxias. However, clinical assessments of oculomotor function lack precision, limiting sensitivity for measuring progression and the ability to detect subtle early signs. Quantitative assessment of eye movements during everyday behaviors such as reading has potential to overcome these limitations and produce functionally relevant measures.
View Article and Find Full Text PDFAnn Glob Health
January 2025
Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, Philadelphia, PA 19104 USA.
Abandoned asbestos mines are a potential source of environmental contamination and exposure for nearby residents. The asbestos exposure risk may persist even after the cessation of mining activity if the mine is not properly closed. One such abandoned mine is at Roro Hills in the Jharkhand state of India.
View Article and Find Full Text PDFNeurophotonics
January 2025
California Institute of Technology, Department of Electrical Engineering, Pasadena, California, United States.
Significance: Cerebral blood flow (CBF) and cerebral blood volume (CBV) are key metrics for regional cerebrovascular monitoring. Simultaneous, non-invasive measurement of CBF and CBV at different brain locations would advance cerebrovascular monitoring and pave the way for brain injury detection as current brain injury diagnostic methods are often constrained by high costs, limited sensitivity, and reliance on subjective symptom reporting.
Aim: We aim to develop a multi-channel non-invasive optical system for measuring CBF and CBV at different regions of the brain simultaneously with a cost-effective, reliable, and scalable system capable of detecting potential differences in CBF and CBV across different regions of the brain.
Microscopy (Oxf)
January 2025
Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan.
Characterizing molten corium-concrete interaction (MCCI) fuel debris in Fukushima reactors is essential to develop efficient methods for its removal. To enhance the accuracy of microscopic observation and focused ion beam (FIB) microsampling of MCCI fuel debris, we developed a three-dimentional FIB scanning electron microscopy (SEM) technique with a multiphase positional misalignment (MPPM) correction method. This system automatically aligns voxel positions, corrects contrast, and removes artifacts from a series of over 500 SEM images.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!