Agonist-mediated regulation of presynaptic receptor function during development of rat septal neurons in culture.

J Neurochem

Laboratory of Neuropharmacology, Institute for Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Hansastrasse, Freiburg, Germany.

Published: August 2007

Presynaptic receptors modulating the release of acetylcholine (ACh) were studied in fetal septal neurons cultured in a growth medium to which various drugs were added from day 3 in vitro (DIV 3) to DIV 14. The influence of these drugs on the function of the presynaptic muscarinic (M-) autoreceptor was determined at DIV 14 by measuring the inhibitory effect of the M-agonist oxotremorine on the electrically-evoked release of [(3)H]ACh from cultures pre-incubated with [(3)H]choline. The presence of the M-agonists oxotremorine (100 micromol/L) or carbachol (100 micromol/L) from DIV 3 to DIV 14, or from DIV 13 to DIV 14, abolished M-autoreceptor function at DIV 14, whereas the presence of the M-antagonist atropine (10 micromol/L from DIV 3 to DIV 14) during growth left M-autoreceptor function unaltered. Inhibition of ACh esterase by donepezil (1 micromol/L from DIV 3 to DIV 14) weakly decreased M-autoreceptor function at DIV 14; inhibition of neuronal firing by 0.1 tetrodotoxin (0.1 micromol/L from DIV 3 to DIV 14) did not tend to affect M-autoreceptor function at DIV 14. Co-cultivation of fetal septal and raphe neurons for 2 weeks yielded cell cultures containing both vesicular ACh transporter- and tryptophan hydroxylase-immunopositive cells. From these cultures, the release of both [(3)H]ACh and [(3)H]5-HT could be induced by electrical field stimulation. In co-cultured neurons versus septal-only ones the inhibitory effect of oxotremorine on the evoked release of [(3)H]ACh appeared almost normal, whereas that of the selective 5-HT(1B) agonist 3-(1,2,5,6-tetrahydropyrid-4-yl)pyrrollo[3,2-b]pyrid-5-one (CP-93,129) was completely abolished. The effects of CP-93,129 were also absent on DIV 14 in septal mono-cultures grown in the presence of CP-93,129 (10 micromol/L) from DIV 3 to DIV 14. It is therefore concluded that the regulation of presynaptic receptor function strongly depends on the concentrations of endogenous transmitters in the neuronal environment.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1471-4159.2007.04598.xDOI Listing

Publication Analysis

Top Keywords

div div
32
micromol/l div
20
div
19
m-autoreceptor function
16
release [3h]ach
12
function div
12
regulation presynaptic
8
presynaptic receptor
8
receptor function
8
septal neurons
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!