Burkholderia vietnamiensis is the third most prevalent species of the Burkholderia cepacia complex (Bcc) found in cystic fibrosis (CF) patients. Its ability at fixing nitrogen makes it one of the main Bcc species showing strong filiations with environmental reservoirs. In this study, 83% (29 over 35) of the B. vietnamiensis CF isolates and 100% of the environmental ones (over 29) were found expressing the dinitrogenase complex (encoded by the nif cluster) which is essential in N(2) fixation. Among the deficient strains, two were found growing with ammonium chloride suggesting that they were defective in N(2) fixation, and four with amino acids supplements suggesting that they were harbouring auxotrophic mutations. To get insights about the genetic events that led to the emergence of the N(2)-fixing defective strains, a genetic analysis of B. vietnamiensis nitrogen-fixing property was undertaken. A 40-kb-long nif cluster and nif regulatory genes were identified within the B. vietnamiensis strain G4 genome sequence, and analysed. Transposon mutagenesis and nifH genetic marker exchanges showed the nif cluster and several other genes like gltB (encoding a subunit of the glutamate synthase) to play a key role in B. vietnamiensis ability at growing in nitrogen-free media. nif cluster DNA probings of restricted genomic DNA blots showed a full deletion of the nif cluster for one of the N(2)-fixing defective strain while the other one showed a genetic organization similar to the one of the G4 strain. For 17% of B. vietnamiensis clinical strains, CF lungs appeared to have favoured the selection of mutations or deletions leading to N(2)-fixing deficiencies.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1462-2920.2007.01240.xDOI Listing

Publication Analysis

Top Keywords

nif cluster
20
burkholderia vietnamiensis
8
cystic fibrosis
8
fibrosis patients
8
auxotrophic mutations
8
n2-fixing defective
8
vietnamiensis
7
nif
7
cluster
5
selection nitrogen-fixing
4

Similar Publications

Non-image forming (NIF) pathways, a specialized branch of retinal circuitry, play a crucial role supporting physiological and behavioral processes, including circadian rhythmicity. Among the NIF regions, the dorsal raphe nucleus (DRN), a midbrain serotonergic cluster of neurons, is also devoted to circadian functions. Despite indirectly send photic inputs to circadian centers and modulating their activities, little is known about the organization of retina-DRN circuits in primate species.

View Article and Find Full Text PDF

Two strains, M1 and H32 with nitrogen-fixing ability, were isolated from the rhizospheres of different plants. Genome sequence analysis showed that a (trogen ixation) gene cluster composed of nine genes () was conserved in the two strains. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strains M1 and H32 are members of the genus .

View Article and Find Full Text PDF

One-step transformation of CO to methane by Escherichia coli with a synthetic biomethanation module.

Biochem Biophys Res Commun

February 2025

Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China; School of Emergency Management, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China. Electronic address:

The biomethanation process is widely recognized as a significant approach to mitigating carbon dioxide emissions while simultaneously generating methane. However, only a few microorganisms that required intricate culturing conditions were identified for biomethanation. Here, Escherichia coli that featured easy cultivation and versatile chassis was genetically modified for biomethanation for the first time.

View Article and Find Full Text PDF

Plants produce floral nectar as a reward for pollinators, which contains carbohydrates and amino acids (AAs). We designed experiments to test whether pollinators could exert selection pressure on the profiles of AAs in nectar. We used HPLC to measure the free AAs and sugars in the nectar of 102 UK plant species.

View Article and Find Full Text PDF

Nitrogen fixation by methanogenic Archaea, literature review and DNA database-based analysis; significance in face of climate change.

Arch Microbiol

November 2024

Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India.

Archaea represents a significant population of up to 10% in soil microbial communities. The role of Archaea in soil is often overlooked mainly due to its unculturability. Among the three domains of life biological nitrogen fixation (BNF) is mainly a trait of Eubacteria and some Archaea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!