Alternating multilayer films composed of titania nanosheets and Zn porphyrins were prepared by use of a previously reported Langmuir-Blodgett film-transfer method in order to fabricate photoelectrochemical devices. Closely packed titania nanosheet monolayers on indium tin oxide (ITO), mica, and quartz surfaces strongly adsorbed cationic [5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrinatozinc]4+ (ZnTMPyP4+) by electrostatic interactions. The alternating deposition process afforded nanometer-scale multilayer films with the following structure: solid surface/(titania nanosheet/ZnTMPyP4+)n (n is the number of layers). The multilayer films were characterized by various physical measurements, including AFM, XRD, and UV-visible spectra. The visible-light irradiation of this multilayer film on an ITO electrode in the presence of triethanolamine as an electron donor yielded an anodic photocurrent. The action spectrum was consistent with the absorption spectrum of ZnTMPyP4+, which indicates that the photoexcitation of ZnTMPyP4+ is responsible for the photocurrent generation. However, the photocurrent density decreased with an increasing number of layers, which indicates that the harvesting of photoexcited electrons vertically through the titania nanosheets in the ITO/(titania nanosheet/ZnTMPyP4+)n structure was not efficient. To overcome this problem, the use of a lateral interlayer connection to all of the titania nanosheets with Ag paste was examined. As a result, a dramatic improvement in the photocurrent density was obtained. Thus, for efficient photocurrent generation with the titania nanosheet-ZnTMPyP4+ composite material, the lateral connection to all of the titania nanosheet layers is effective.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la063577o | DOI Listing |
Anal Methods
January 2025
Microelectronic Research & Development Center, School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200444, China.
An integrated magnetoimpedance (MI) biosensor microfluidic magnetic platform was proposed for the evaluation of the cardiac marker, cardiac troponin I (cTnI). This bioanalyte evaluation platform mainly comprised three external permanent magnets (PMs), one MI element, two peelable SiO film units and a microfluidic chip (MFC). The MI element was made of micro-electro-mechanical system (MEMS)-based multilayered [Ti (6 nm)/FeNi (100 nm)]/Cu (400 nm)/[Ti (6 nm)/FeNi (100 nm)] thin films and designed as meander structures with closed magnetic flux.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, Chiba 263-8522, Japan.
Organic multilayer systems, which are stacked layers of different organic materials, are used in various organic electronic devices such as organic light-emitting diodes (OLEDs) and organic field-effect transistors (OFETs). In particular, OFETs are promising as key components in flexible electronic devices. In this study, we investigated how the inclusion of an insulating tetratetracontane (TTC) interlayer in ambipolar indigo-based OFETs can be used to alter the crystallinity and electrical properties of the indigo charge transport layer.
View Article and Find Full Text PDFSci Adv
January 2025
Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA.
We report the appearance of superconductivity in single-unit-cell NdNiO, exhibiting a transition temperature similar to that of thicker films. In situ synchrotron x-ray scattering performed during growth of the parent phase, NdNiO, shows that the necessary layer-by-layer deposition sequence does not follow the sequence of the formula unit but an alternate order due to the relative stability of the perovskite unit cell. We exploit this insight to grow ultrathin NdNiO heterostructures and conduct in situ studies of topotactic reduction, finding that formation of the square-planar phase occurs rapidly and is highly sensitive to reduction temperature, with small deviations from the optimum condition leading to inhomogeneity and the loss of superconductivity.
View Article and Find Full Text PDFSmall Methods
December 2024
Department of Advanced Materials for Energy Applications, Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, Sant Adrià del Besòs, Barcelona, 08930, Spain.
Functional properties of mixed ionic electronic conductors (MIECs) can be radically modified by (de)insertion of mobile charged defects. A complete control of this dynamic behavior has multiple applications in a myriad of fields including advanced computing, data processing, sensing or energy conversion. However, the effect of different MIEC's state-of-charge is not fully understood yet and there is a lack of strategies for fully controlling the defect content in a material.
View Article and Find Full Text PDFAppl Spectrosc
December 2024
Chair of Waste Processing Technology and Waste Management, Department of Environmental and Energy Process Engineering, Montanuniversitaet Leoben, Leoben, Austria.
The low thickness of plastic films poses a challenge when using near-infrared (NIR) spectroscopy as it affects the spectral quality and classification. This research focuses on offering a solution to the challenge of classifying multilayer plastic film materials with a focus on polyolefin multilayer plastics. It presents the importance of spectral quality on accurate classification.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!