Neural interactions between flicker-induced self-organized visual hallucinations and physical stimuli.

Proc Natl Acad Sci U S A

General Dynamics, Inc., Suite 200, 5200 Springfield Pike, Dayton, OH 45431, USA.

Published: May 2007

Spontaneous pattern formation in cortical activity may have consequences for perception, but little is known about interactions between sensory-driven and self-organized cortical activity. To address this deficit, we explored the relationship between ordinary stimulus-controlled pattern perception and the autonomous hallucinatory geometrical pattern formation that occurs for unstructured visual stimulation (e.g., empty-field flicker). We found that flicker-induced hallucinations are biased by the presentation of adjacent geometrical stimuli; geometrical forms that map to cortical area V1 as orthogonal gratings are perceptually opponent in biasing hallucinations. Rotating fan blades and pulsating circular patterns are the most salient biased hallucinations. Apparent motion and fractal (1/f) noise are also effective in driving hallucinatory pattern formation (the latter is consistent with predictions of spatiotemporal pattern formation driven by stochastic resonance). The behavior of these percepts suggests that self-organized hallucinatory pattern formation in human vision is governed by the same cortical properties of localized processing, lateral inhibition, simultaneous contrast, and nonlinear retinotopic mapping that govern ordinary vision.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1895977PMC
http://dx.doi.org/10.1073/pnas.0610813104DOI Listing

Publication Analysis

Top Keywords

pattern formation
20
cortical activity
8
hallucinatory pattern
8
pattern
6
formation
5
neural interactions
4
interactions flicker-induced
4
flicker-induced self-organized
4
self-organized visual
4
hallucinations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!