Class IA phosphoinositide 3-kinases (PI3Ks) signal downstream of tyrosine kinases and Ras and control a wide variety of biological responses. In mammals, these heterodimeric PI3Ks consist of a p110 catalytic subunit (p110alpha, p110beta, or p110delta) bound to any of five distinct regulatory subunits (p85alpha, p85beta, p55gamma, p55alpha, and p50alpha, collectively referred to as "p85s"). The relative expression levels of p85 and p110 have been invoked to explain key features of PI3K signaling. For example, free (i.e., non-p110-bound) p85alpha has been proposed to negatively regulate PI3K signaling by competition with p85/p110 for recruitment to phosphotyrosine docking sites. Using affinity and ion exchange chromatography and quantitative mass spectrometry, we demonstrate that the p85 and p110 subunits are present in equimolar amounts in mammalian cell lines and tissues. No evidence for free p85 or p110 subunits could be obtained. Cell lines contain 10,000-15,000 p85/p110 complexes per cell, with p110beta and p110delta being the most prevalent catalytic subunits in nonleukocytes and leukocytes, respectively. These results argue against a role of free p85 in PI3K signaling and provide insights into the nonredundant functions of the different class IA PI3K isoforms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1876529 | PMC |
http://dx.doi.org/10.1073/pnas.0700373104 | DOI Listing |
Genes Dis
March 2025
Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.
Phosphoinositide 3-kinases (PI3Ks) are heterodimers consisting of a p110 catalytic subunit and a p85 regulatory subunit. The gene, which encodes the p110α, is the most frequently mutated oncogene in cancer. Oncogenic mutations activate the PI3K pathway, promote tumor initiation and development, and mediate resistance to anti-tumor treatments, making the mutant p110α an excellent target for cancer therapy.
View Article and Find Full Text PDFACS Omega
November 2024
Zhejiang Province Key Laboratory of Smart Management & Application of Modern Agricultural Re-sources, School of Information Engineering, Huzhou University, Huzhou 313000, Zhejiang Province,China.
Semin Cancer Biol
November 2024
Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA. Electronic address:
Clin Chim Acta
July 2024
School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, India. Electronic address:
Background: This study aims to identify metabolomic signatures in uterine fluid of women with idiopathic recurrent spontaneous miscarriage (IRSM) during window of implantation (WOI). Also, glucose transporters GLUT3 and GLUT4 and proteins of PI3K-Akt signaling pathway in endometrial tissue are assessed.
Methods: Paired uterine fluid and endometrial biopsies were collected during WOI from women with IRSM (n = 24) and healthy women with azoospermic male partners as controls (n = 15).
bioRxiv
April 2024
Biological and Environmental Science and Engineering Division, Computational Biology Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 2395-56900, Kingdom of Saudi Arabia.
The phosphoinositide-3 kinase (PI3K), a heterodimeric enzyme, plays a pivotal role in cellular metabolism and survival. Its deregulation is associated with major human diseases, particularly cancer. The p85 regulatory subunit of PI3K binds to the catalytic p110 subunit via its C-terminal domains, stabilising it in an inhibited state.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!