Androgen receptor (AR) mediates diverse androgen actions, particularly reproductive processes in males and females. AR-mediated androgen signaling is considered to also control metabolic processes; however, the molecular basis remains elusive. In the present study, we explored the molecular mechanism of late-onset obesity in male AR null mutant (ARKO) mice. We determined that the obesity was caused by a hypercorticoid state. The negative feedback system regulating glucocorticoid production was impaired in ARKO mice. Male and female ARKO mice exhibited hypertrophic adrenal glands and glucocorticoid overproduction, presumably due to high levels of adrenal corticotropic hormone. The pituitary glands of the ARKO males had increased expression of proopiomelanocortin and decreased expression of the glucocorticoid receptor (GR). There were no overt structural abnormalities and no alteration in the distribution of cell types in the pituitaries of male ARKO mice. Additionally, there was normal production of the other hormones within the glucocorticoid feedback system in both the pituitary and hypothalamus. In a cell line derived from pituitary glands, GR expression was under the positive control of the activated AR. Thus, this study suggests that the activated AR supports the negative feedback regulation of glucocorticoid production via up-regulation of GR expression in the pituitary gland.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1951475 | PMC |
http://dx.doi.org/10.1128/MCB.02039-06 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!