In the present study, we report advanced patterned biofunctionalization of thermoresponsive surfaces for achievement of spatiotemporally controlled cell adhesion, growth, and thermally induced detachment. These patterned biofunctional thermoresponsive surfaces were prepared using dual surface modification techniques: electron beam-induced surface patterning of carboxyl-functional thermoresponsive polymers with appropriate metal masks and following site-selective biofunctionalization with biomolecules, the cell adhesive peptide (RGDS) and/or the cell growth factor (insulin; INS). Patterned co-immobilization of RGDS-INS onto thermoresponsive surfaces dominated site-selective cell adhesion and growth along with patterned biofunctional domains in the serum-free culture. Spatiotemporal detachment of sparsely adherent and confluent cells from these patterned biofunctional thermoresponsive surfaces were both achieved only by reducing temperature. Furthermore, RGDS-INS-patterned thermoresponsive surfaces also successfully demonstrated the selective fabrication and recovery of either contiguous monolayer or mesh-like designed monolayer tissue constructs on the identical surfaces. Thus, patterned biofunctional designs would be utilized for the creation and harvest of biomimetic-designed vascular networks having sufficient biofunctional activities in facilitated cell sheet engineering and regenerative medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2007.04.019 | DOI Listing |
Adv Healthc Mater
January 2025
Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials and Technology, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland.
Surface-mediated transmission of pathogens plays a key role in healthcare-associated infections. However, proper techniques for its quantitative analysis are lacking, making it challenging to develop novel antimicrobial and anti-fouling surfaces to reduce pathogen spread via environmental surfaces. This study demonstrates a gelatin hydrogel-based touch transfer test, the HydroTouch test, to evaluate pathogen transmission on high-touch surfaces under semi-dry conditions.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India; Department of Applied Chemistry, Maulana Abul Kalam Azad University of Technology, Simhat, Haringhata, West Bengal, 741249, India. Electronic address:
Background: The intellectual progress in fabricating artificial probes for selective appraisal of biologically admissible amino acids has displayed exponential growth in recent era.The neoteric era in material science has witnessed the significant application of carbon quantum dots (CQDs). However, the hybrid microgel of CQDs was less explored.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037 China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037 China. Electronic address:
Poly(N-isopropylacrylamide) (PNIPAM) composite hydrogels have recently emerged as promising candidates for soft hydrogel actuators. However, developing a facile and fast method to obtain multifunctional PNIPAM hydrogel actuators with simulating biological versatility remains a major challenge. Herein, we developed a fast-redox initiation system to prepare PNIPAM/sodium carboxymethyl cellulose (CMC)/TCT MXene nanocomposite hydrogel with multidirectional actuating behaviors and improved mechanical properties.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
Introduction of non-DLVO forces by nonionic surfactants brings about fascinating changes in the phase behavior of silica nanosuspensions. We show here that alterations in the interaction and wetting properties of negatively charged silica nanoparticles (Ludox® LS) in the presence of polyethylene oxide-polypropylene oxide-polyethylene oxide-based triblock copolymers called Pluronics lead to the formation of stable o/w Pickering emulsions and interparticle attraction-induced thermoresponsive liquid-liquid phase separations. The results make interesting comparisons with those reported for Ludox® TM nanosuspensions comprising larger silica nanoparticles.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Center of Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
Sprayable hydrogels have emerged as a transformative innovation in biomedical technology, offering a versatile, efficient, and minimally invasive platform for various clinical applications. They form gels upon tissue contact, enabling seamless application on even complex surfaces. This property is especially useful in wound care, drug delivery, and tissue engineering, where localized and sustained release of therapeutics is essential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!