Control of the growth of leukemic cells (L1210) through manipulation of trace metals.

Anticancer Res

Department of Pediatrics, UTMB, Galveston, TX 77550.

Published: January 1992

Trace metals have a role in the activity of the enzyme ribonucleotide reductase (RR) which is essential for the synthesis of DNA and the growth of lymphocytes. Manipulation of the intracellular metals of leukemic cells has been proposed for the therapeutic control of cell growth. We studied the effects of prolonged metal deprivation (Fe, Cu, Zn) on cell growth and RR activity of murine leukemic lymphocytes in culture in metal-depleted media. Intracellular metals, cell growth and RR activity were decreased in related and interdependent ways. A metal-chelator (deferoxamine, DFX) had similar effect. In all cases these effects were reversible by metal supplementation. We conclude that it is possible to control RR activity and growth of leukemic cells in vitro by exposing them to a metal-poor environment (eg. through the action of a chelator). These effects are not permanent, but might be beneficial if integrated with more conventional measures (chemotherapy).

Download full-text PDF

Source

Publication Analysis

Top Keywords

leukemic cells
12
cell growth
12
growth leukemic
8
trace metals
8
intracellular metals
8
growth activity
8
growth
5
control growth
4
leukemic
4
cells l1210
4

Similar Publications

Acute lymphoblastic leukaemia is the most common childhood malignancy that remains a leading cause of death in childhood. It may be characterised by multiple known recurrent genetic aberrations that inform prognosis, the most common being hyperdiploidy and t(12;21) . We aimed to assess the applicability of a new imaging flow cytometry methodology that incorporates cell morphology, immunophenotype, and fluorescence in situ hybridisation (FISH) to identify aneuploidy of chromosomes 4 and 21 and the translocation .

View Article and Find Full Text PDF

Early T-cell Precursor Acute Lymphoblastic Leukemia (ETP-ALL) is an immature subtype of T-cell acute lymphoblastic leukemia (T-ALL) commonly show deregulation of the LMO2-LYL1 stem cell transcription factors, activating mutations of cytokine receptor signaling, and poor early response to intensive chemotherapy. Previously, studies of the Lmo2 transgenic mouse model of ETP-ALL identified a population of stem-like T-cell progenitors with long-term self-renewal capacity and intrinsic chemotherapy resistance linked to cellular quiescence. Here, analyses of Lmo2 transgenic mice, patient-derived xenografts, and single-cell RNA-sequencing data from primary ETP-ALL identified a rare subpopulation of leukemic stem cells expressing high levels of the cytokine receptor FLT3.

View Article and Find Full Text PDF

T-cell prolymphocytic leukemia (T-PLL) is a rare mature T-cell lymphoma that is usually associated with poor prognosis and short overall survival. We present a case of a 61-year-old woman presenting with T-PLL and the leukemic cells harboring (-breakpoint cluster region; -ABL protooncogene 1) fusion transcripts as the result of a variant of t(9;22)(q34;q11) called Philadelphia translocation: t(9;22;18)(q34;q11;q21). Sequencing revealed a rare transcript with an exon 6 breakpoint corresponding to e6a2 transcripts, which has thus far been reported in only 26 cases of leukemias.

View Article and Find Full Text PDF

Benzene-induced hematotoxicity enhances the self-renewal ability of HSPCs in Mll-Af9 mice.

Toxicology

January 2025

Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China; China State Key Laboratory of Trauma, Burn and Combined Injury, China. Electronic address:

Patients with benzene-induced leukemia undergo a continuous transformation from myelosuppression to malignant proliferation. However, the underlying mechanisms in this process remain unknown. Our previous studies have shown that the pathways involved in self-renewal capacity of bone marrow (BM) cells in Mll-Af9 mice exposed to benzene for life are significantly activated after severe blood toxicity.

View Article and Find Full Text PDF

FLT3 is genetically essential for ITD-mutated leukemic stem cells but dispensable for human hematopoietic stem cells.

Blood

January 2025

1Princess Margaret Cancer Centre, University Health Network; Toronto, ON M5G 1L7, Canada 14Department of Molecular Genetics, University of Toronto; Toronto, ON, Canada, Canada.

Leukemic stem cells (LSCs) fuel acute myeloid leukemia (AML) growth and relapse, but therapies tailored towards eradicating LSCs without harming normal hematopoietic stem cells (HSCs) are lacking. FLT3 is considered an important therapeutic target due to frequent mutation in AML and association with relapse. However, there has been limited clinical success with FLT3 drug targeting, suggesting either that FLT3 is not a vulnerability in LSC, or that more potent inhibition is required, a scenario where HSC toxicity could become limiting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!