Antitumor therapy with the anthracycline doxorubicin is limited by a severe cardiotoxicity, which seems to correlate with the cardiac levels of doxorubicin and its metabolization to reactive oxygen species. Previous biochemical studies showed that hydrogen peroxide-activated myoglobin caused an oxidative degradation of doxorubicin; however, a pharmacological evaluation of this metabolic pathway was precluded by the lack of safe and specific inhibitors of doxorubicin degradation. We found that tert-butoxycarbonyl-alanine inhibited doxorubicin degradation induced in vitro by hydrogen peroxide-activated oxyferrous myoglobin. When assessed in H9c2 cardiomyocytes, tert-butoxycarbonyl-alanine neither stimulated the cellular uptake of doxorubicin nor diminished its efflux; moreover, tert-butoxycarbonyl-alanine did not cause toxicity per se nor did it augment the toxicity induced by hydrogen peroxide or chemical agents that increased the cellular levels of reactive oxygen species. Nonetheless, tert-butoxycarbonyl-alanine increased the cellular levels of doxorubicin, its conversion to reactive oxygen species, and its concentration-related toxicity. tert-Butoxycarbonyl-alanine also aggravated the toxicity of a degradation-prone anthracycline analog, daunorubicin, but it caused a minor effect on the toxicity of a degradation-resistant analog, aclarubicin. These results suggested that tert-butoxycarbonyl-alanine increased the cellular levels and toxicity of doxorubicin by inhibiting its oxidative degradation to harmless products. Accordingly, doxorubicin samples that had been oxidized in vitro with hydrogen peroxide and oxyferrous myoglobin lacked toxicity to cardiomyocytes. The effects of tert-butoxycarbonyl-alanine were most evident at 0.1 to 1 microM doxorubicin, which may be relevant to clinical conditions. These studies identify an oxidative degradation of doxorubicin as a possible salvage mechanism for diminishing its levels and toxicity in cardiomyocytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/jpet.107.122820 | DOI Listing |
Colloids Surf B Biointerfaces
January 2025
Institute of Cancer Therapeutics, University of Bradford, Bradford, Richmond Rd, Bradford BD7 1DP, United Kingdom. Electronic address:
Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer defined by the lack of three key receptors: estrogen, progesterone, and HER2. This lack of receptors makes TNBC difficult to treat with hormone therapy or drugs, and so it is characterised by a poor prognosis compared to other kinds of breast cancer. This study explores photoactive Poly(lactic-co-glycolic acid) (PLGA) nanoparticles as a potential therapeutic strategy for TNBC.
View Article and Find Full Text PDFIUBMB Life
January 2025
The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China.
NKTCL is a highly aggressive malignant tumor, especially prevalent in the southern regions of China. Although chemotherapy regimens based on ADM have achieved certain therapeutic effects in early treatment, the issue of ADM resistance severely limits the therapeutic efficacy and makes it difficult to improve patient survival rates. Our research results indicate that the expression level of APOC1 is closely related to the sensitivity of NKTCL cells to ADM.
View Article and Find Full Text PDFCurr Cancer Drug Targets
January 2025
Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, Liaoning, China.
Introduction: The cardiotoxicity and subsequent Heart Failure (HF) induced by Doxorubicin (DOX) limit the clinical application of DOX. Valsartan (Val) is an angiotensin II receptor blocker that could attenuate the HF induced by DOX. However, the underlying mechanism of Val in this process is not fully understood.
View Article and Find Full Text PDFCurr Mol Med
January 2025
Department of Anesthesiology, Baoan Central Hospital of Shenzhen, Shenzhen, Guangdong Province, China.
Background: Morphine, a mu-opioid receptor (MOR) agonist commonly utilized in clinical settings alongside chemotherapy to manage chronic pain in cancer patients, has exhibited contradictory effects on cancer, displaying specificity toward certain cancer types and doses.
Objective: The aim of this study was to conduct a systematic assessment and comparison of the impacts of morphine on three distinct cancer models in a preclinical setting.
Methods: Viability and apoptosis assays were conducted on a panel of cancer cell lines following treatment with morphine, chemotherapy drugs alone, or their combination.
Gen Physiol Biophys
January 2025
Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia.
Senescence, a crucial yet paradoxical phenomenon in cellular biology, acts as a barrier against cancer progression while simultaneously promoting aging and age-related pathologies. This duality underlines the importance of precise monitoring of senescence response, especially with regard to the proposed use of drugs selectively removing senescent cells. In particular, little is known about the role of senescence in neurons and in neurodegenerative diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!