Epilithic periphyton communities were sampled at three sites on the Minnesota shoreline of Lake Superior from June 2004 to August 2005 to determine if fecal coliforms and Escherichia coli were present throughout the ice-free season. Fecal coliform densities increased up to 4 orders of magnitude in early summer, reached peaks of up to 1.4x10(5) CFU cm-2 by late July, and decreased during autumn. Horizontal, fluorophore-enhanced repetitive-PCR DNA fingerprint analyses indicated that the source for 2% to 44% of the E. coli bacteria isolated from these periphyton communities could be identified when compared with a library of E. coli fingerprints from animal hosts and sewage. Waterfowl were the major source (68 to 99%) of periphyton E. coli strains that could be identified. Several periphyton E. coli isolates were genotypically identical (>or=92% similarity), repeatedly isolated over time, and unidentified when compared to the source library, suggesting that these strains were naturalized members of periphyton communities. If the unidentified E. coli strains from periphyton were added to the known source library, then 57% to 81% of E. coli strains from overlying waters could be identified, with waterfowl (15 to 67%), periphyton (6 to 28%), and sewage effluent (8 to 28%) being the major potential sources. Inoculated E. coli rapidly colonized natural periphyton in laboratory microcosms and persisted for several weeks, and some cells were released to the overlying water. Our results indicate that E. coli from periphyton released into waterways confounds the use of this bacterium as a reliable indicator of recent fecal pollution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1932738 | PMC |
http://dx.doi.org/10.1128/AEM.02654-06 | DOI Listing |
Ecology
January 2025
Department of Ecology, University of Innsbruck, Innsbruck, Austria.
The trait-based partitioning of species plays a critical role in biodiversity-ecosystem function relationships. This niche partitioning drives and depends on community structure, yet this link remains elusive in the context of a metacommunity, where local community assembly is dictated by regional dispersal alongside local environmental conditions. Hence, elucidating the coupling of niche partitioning and community structure needs spatially explicit studies.
View Article and Find Full Text PDFStream periphyton is an ideal study system for explaining how dispersal shapes community patterns. Few studies have tried to investigate periphyton metacommunities at the reach scale, and studies comparing local versus upstream periphyton propagule sources are lacking. We aimed to address these knowledge gaps by disentangling environmental constraints and dispersal sources, including dispersal hypotheses related to periphyton functional guilds.
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China.
J Environ Manage
November 2024
Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, 315211, China; Donghai Institute, Ningbo University, Ningbo, 315211, China; Institute of Hydraulic and Ocean Engineering, Ningbo, 315211, China. Electronic address:
Small hydropower plants (SHPs) play a crucial role in clean energy production, yet they also disrupted river ecosystems. To achieve a balance between energy production, biodiversity conservation, and ecosystem integrity, it is essential to study how aquatic organisms respond to SHP operations. Prior researches had shown that SHP operations have the most significant impact in dewatering sections, but studies often overlook the influence of ecological flows.
View Article and Find Full Text PDFISME Commun
January 2024
State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China.
Periphytons serve as critical microbial nutrient sinks at the soil-water interface, influencing biogeochemical cycles and nutrient migration in paddy fields. Despite their importance, the impact of accumulated intracellular nutrients on the spatial dynamics and community assembly of periphytons, particularly their microeukaryote communities, remains unclear. To address this gap, we examined the nutrient accumulation potential and its effects on microeukaryotes in periphytons from 220 paddy fields spanning up to 3469 km across three temperature zones.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!