In all plant species studied to date, sucrose synthase occurs as multiple isoforms. The specific functions of the different isoforms are for the most part not clear. Six isoforms of sucrose synthase have been identified in the model legume Lotus japonicus, the same number as in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). The genes encoding these isoforms are differentially expressed in all plant organs examined, although one, LjSUS4, is only expressed in flowers. LjSUS1 is the most highly expressed in all plant organs tested, except root nodules, where LjSUS3 accounts for more than 60% of the total SUS transcripts. One gene, LjSUS2, produces two transcripts due to alternative splicing, a feature not observed in other species to date. We have isolated plants carrying ethyl methanesulfonate-induced mutations in several SUS genes by targeting-induced local lesions in genomes reverse genetics and examined the effect of null alleles of two genes, LjSUS1 and LjSUS3, on nodule function. No differences were observed between the mutants and wild-type plants under glasshouse conditions, but there was evidence for a nitrogen-starvation phenotype in the sus3-1 mutant and severe impairment of growth in the sus1-1/sus3-1 double mutant under specific environmental conditions. Nodules of sus3-1 mutant plants retained a capacity for nitrogen fixation under all conditions. Thus, nitrogen fixation can occur in L. japonicus nodules even in the absence of LjSUS3 (the major nodule-induced isoform of SUS), so LjSUS1 must also contribute to the maintenance of nitrogen assimilation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1914161PMC
http://dx.doi.org/10.1104/pp.107.097063DOI Listing

Publication Analysis

Top Keywords

sucrose synthase
12
lotus japonicus
8
nitrogen assimilation
8
fixation occur
8
expressed plant
8
plant organs
8
sus3-1 mutant
8
nitrogen fixation
8
tilling mutants
4
mutants lotus
4

Similar Publications

Seed shattering (SS) functions are a survival mechanism in plants, enabling them to withstand adverse environmental conditions and ensure reproduction. However, this trait limits seed yield. , a perennial forage grass with many favorable traits, is constrained by SS, limiting its broader application.

View Article and Find Full Text PDF

Sucrose synthase gene family in common bean during pod filling subjected to moisture restriction.

Front Plant Sci

December 2024

Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)-Facultad de Ciencias Químicas, Universidad Veracruzana, Orizaba, Veracruz, Mexico.

Article Synopsis
  • Drought significantly impacts leaf photosynthesis in common beans, but some cultivars compensate by using pod walls as carbohydrate reservoirs for seed filling.
  • A genome-wide analysis of the sucrose synthase (SUS) gene family revealed 7 genes with varying structures and evolutionary relationships among plant species.
  • Experiments showed increased SUS activity and higher fructose and sucrose levels in pods under water restriction, indicating enhanced transport and metabolic processes during seed development under drought conditions.
View Article and Find Full Text PDF

We investigated the effects of exogenous abscisic acid (ABA) on grain filling, starch accumulation, and endogenous hormones in maize (both the heat-tolerant maize variety Zhengdan 958 (ZD958) and the heat-sensitive variety Xianyu 335 (XY335)) under early post-anthesis high temperature stress by simulating high temperature stress for a period of 6 to 12 days post-anthesis in 2022 and 2023. There were three treatments: spraying water at ambient temperature as the control, spraying water at high temperature, and spraying ABA at high temperature. The results showed that early post-anthesis high temperature stress resulted in a significant reduction in grain weight and yield in maize, with XY335 showing a greater reduction than ZD958.

View Article and Find Full Text PDF

PsbHLH58 positively regulates sucrose accumulation by modulating Sucrose synthase 4 in 'Fengtang' plum (Prunus salicina Lindl.).

Plant Physiol Biochem

December 2024

Guizhou Engineering Research Center for Fruit Crops, Agricultural College, Guizhou University, Guiyang, 550025, People's Republic of China. Electronic address:

Sugar content is an important factor that largely determines fruit quality. 'Fengtang' plum (Prunus salicina Lindl.) is recognized for its high soluble sugar content, and the Sucrose synthase 4 (PsSUS4) functions as the controlling step in sucrose accumulation.

View Article and Find Full Text PDF

Melatonin (MT) can improve plant resistance and fruit quality. The mechanism by which MT affects soluble sugar and organic acids accumulation in drupe fruits is not clear. In this study, 100 µmol/L MT was sprayed on the leaves of plum trees at the second stage of rapid fruit expansion (90 and 97 d after flowering), and the effects of MT on plum fruit quality and its effects on the soluble sugar-organic acid metabolism were investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!