In order to establish novel hybrid neural discriminant model, linear discriminant analysis (LDA) was used at the first stage to evaluate the contribution of sequence parameters in determining the protein structural class. An in-house program generated parameters including single amino acid and all dipeptide composition frequencies for 498 proteins came from Zhou [An intriguing controversy over protein structural class prediction, J. Protein Chem. 17(8) (1998) 729-738]. Then, 127 statistically effective parameters were selected by stepwise LDA and were used as inputs of the artificial neural networks (ANNs) to build a two-stage hybrid predictor. In this study, self-consistency and jackknife tests were used to verify the performance of this hybrid model, and were compared with some of prior works. The results showed that our two-stage hybrid neural discriminant model approach is very promising and may play a complementary role to the existing powerful approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpc.2007.03.006DOI Listing

Publication Analysis

Top Keywords

two-stage hybrid
12
hybrid neural
12
neural discriminant
12
discriminant model
12
protein structural
8
structural class
8
hybrid
5
novel two-stage
4
neural
4
discriminant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!